首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Fluid Phase Equilibria》2005,233(1):110-121
A new equation of state based on the Statistical Associating Fluid Theory (SAFT) is presented to study the phase behavior of associating and non-associating fluids. In the new equation of state, the hard sphere contribution to compressibility factor of the simplified version of the SAFT (SSAFT) is replaced with that proposed by Ghotbi and Vera. The Ghotbi–Vera SSAFT (GV-SSAFT) was also extended to study the phase behavior of associating and non-associating mixtures. The GV-SSAFT like the SSAFT equation of state has three adjustable segment parameters for non-associating fluids and five parameters for associating fluids. The experimental data of liquid densities and vapor pressures for pure fluids studied in this work were used to obtain the best values for the parameters of the GV-SSAFT. The results obtained from the GV-SSAFT for liquid densities and vapor pressures of pure associating and non-associating fluids were compared with those obtained from the SSAFT equation of state. The results showed that the GV-SSAFT similar to the SSAFT can accurately correlate the experimental data of liquid density and vapor pressure for systems studied. On the other hand the results obtained from two SAFT-based equations of state are almost identical. In order to show capability of the GV-SSAFT and SSAFT equations of state, they were used to directly calculate heat of vaporization for a number of pure associating and non-associating fluids. Slightly better results for heat of vaporization comparing to the experimental data were obtained from the GV-SSAFT EOS than those obtained from the SSAFT. The GV-SSAFT was also used to study the VLE phase behavior for a number of binary associating and non-associating mixtures. The results also showed that the GV-SSAFT can be successfully used to study the phase behavior of mixtures studied in this work.  相似文献   

2.
The recently developed Cubic-Plus-Association Equation of State (CPA EoS) is extended in this study to binary systems containing one associating compound (alcohol) and an inert one (hydrocarbon). CPA combines the Soave-Redlich-Kwong (SRK) equation of state for the physical part with an association term based on perturbation theory. The classical van der Waals one-fluid mixing rules are used for the attractive and co-volume parameters, and b, while the extension of the association term to mixtures is rigorous and does not require any mixing rules. Excellent correlation of Vapor-Liquid Equilibria (VLE) is obtained using a small value for the interaction parameter (kij) in the attractive term of the physical part of the equation of state even when it is temperature-independent. CPA yileds much better results than SRK and its performance is similar to that of other association models, like the Anderko EoS, and the more complex SAFT and Simplified SAFT EoS.  相似文献   

3.
《Fluid Phase Equilibria》1999,163(1):79-98
Phase equilibria in binary and ternary polyolefin systems are calculated using the cubic equation of state proposed by Sako–Wu–Prausnitz (SWP). Calculations were done for high-pressure phase equilibria in ethylene/polyethylene (LDPE) systems and for liquid–liquid equilibria (LLE) in systems containing either high-density polyethylene or poly(ethylene-co-propylene). The calculations for the copolymer/solvent systems are compared with those using the SAFT EOS. The two equations of state can describe UCST, LCST as well as U-LCST behaviour with similar accuracy. Whereas, the binary interaction parameter is temperature-independent for SAFT, it is found to be a function of temperature for the SWP model. Moreover, the influence of an inert gas on the LCST of the polyethylene/hexane system is investigated using the SWP EOS. The polydispersity of the different polyethylenes is considered in the phase equilibrium calculations using pseudocomponents chosen by the moments of the experimental molecular weight distributions.  相似文献   

4.
Recently, a new statistical mechanic-based equation of state has been proposed by Mohsen-Nia and Modarress [M. Mohsen-Nia, H. Modarress, Chem. Phys. 336 (2007) 22–26] for associating pure fluids. The new association equation of state (AEOS) was successfully applied to calculate the saturated properties of water, methanol, and ammonia. In this work, the new proposed AEOS is used to evaluate the (vapour + liquid) equilibrium (VLE) of 25 associating pure compounds and the adjusted parameters are reported. The new AEOS is also extended to mixtures containing associating and non-associating compounds. The calculated saturated properties of the pure compounds are compared with those calculated by other AEOSs. The results of VLE calculation for various binary mixtures such as: alcohol/hydrocarbon, alcohol/CO2, alcohol/aromatic-hydrocarbons, and the quaternary system (H2O/CH4/CO2/H2S) indicate the capability of the new proposed AEOS for associating pure and mixture calculations.  相似文献   

5.
A new equation of state for associating fluids has recently been presented by Medeiros and Tellez-Arredondo, the Cubic-Two-State Equation of State (CTS EoS) [Ind. Eng. Chem. Res. 47 (2008) 5723]. This equation arises from the coupling of the Soave–Redlich–Kwong EoS (SRK) with an association term from a two-state association model. The CTS EoS is polynomial in volume and it is able to describe vapor pressures and molar volume of associating fluids such as water, alcohol and phenol, among others. The equation is also able to describe the liquid–vapor equilibria of their mixtures with alkanes. In this paper, the physical and thermodynamic foundations of the CTS EoS are further investigated. In order to verify its applicability for cross-associating systems, the equation was employed in the prediction of phase equilibria behavior of binary alcohol–alcohol and water–alcohol mixtures. Very good agreement between predictions and experimental phase equilibria data was obtained with very simple combining rules and only one adjustable binary parameter. No additional parameters were necessary to describe ternary systems. With the purpose of checking the model's hypothesis and limitations, the two-state association term was coupled with the hard sphere Carnahan–Starling EoS, forming the CS-TS equation and the association characteristic parameters were determined theoretically for prototype association fluids. Monte Carlo NPT simulations of such fluids were performed and the results were compared with the equation's predictions. The CS-TS was able to describe qualitatively the pvTpvT behavior of the prototype; nevertheless, it is not as accurate as those predictions obtained from the combination CS with Wertheim's association term. It seems that, when adjusting parameters of the CTS EoS to real substances, the discrepancies between the predicted and the real association contribution are dissipated among other adjustable parameters, specially on the dispersive term of the SRK equation. Finally, it is shown that CTS EoS isotherms can only have one or three real bigger roots than the co-volume for positive pressures, similar to cubic equations of state, and then it has the desirable form to describe vapor–liquid phase equilibria of associating compounds mixtures.  相似文献   

6.
7.
An equation of state for the multicomponent fluid phase of nonattracting rigid particles of arbitrary shape is presented. The equation is a generalization of a previously presented equation of state for pure fluids of rigid particles; the approach describes the volumetric properties of a pure fluid in terms of a shape factor, zeta, which can be back calculated by scaling the volumetric properties of pure fluids to that of a hard sphere. The performance of the proposed equation is tested against mixtures of chain fluids immersed in a "monomeric" solvent of hard spheres of equal and different sizes. Extensive new Monte Carlo simulation data are presented for 19 binary mixtures of hard homonuclear tangent freely-jointed hard sphere chains (pearl-necklace) of various lengths (three to five segments), with spheres of several size ratios and at various compositions. The performance of the proposed equation is compared to the hard-sphere SAFT approach and found to be of comparable accuracy. The equation proposed is further tested for mixtures of spheres with spherocylinders. In all cases, the equation proved to be accurate and simple to use.  相似文献   

8.
Two association models, the CPA and sPC-SAFT equations of state, are applied to binary mixtures containing alkanolamines and hydrocarbons or water. CPA is applied to mixtures of MEA and DEA, while sPC-SAFT is applied to MEA-n-heptane liquid-liquid equilibria and MEA-water vapor-liquid equilibria. The role of association schemes is investigated in connection with CPA, while for sPC-SAFT emphasis is given on the role of different types of data in the determination of pure compound parameters suitable for mixture calculations. Moreover, the performance of CPA and sPC-SAFT for MEA-containing systems is compared. The investigation showed that vapor pressures and liquid densities were not sufficient for obtaining reliable parameters with either CPA or sPC-SAFT, but that at least one other type of information is needed. LLE data for a binary mixture of the associating component with an inert compound is very useful in the estimation. The simple 4-site scheme is suitable for both CPA and sPC-SAFT and little is gained by using more complex association schemes. Finally, the results of CPA and sPC-SAFT are overall similar and whatever differences are seen appear to be more related to details in the parametrization rather than the different functional forms of the two equations of state.  相似文献   

9.
A new cubic three-parameter equation of state has been proposed for PVT and VLE calculations of simple, high polar and associating fluids. The parameters are temperature dependent in sub-critical region, but temperature independent in super-critical region. The results for 42 simple and 14 associative pure compounds indicate that the calculated saturation properties and volumetric properties over the whole temperature range, up to high pressures, by the proposed equation of state (EOS), were in better agreement with the experimental data, compared with those obtained by the five well-known EOSs (P–R, P–T, Adachi et al., Yu–Lu, and M4). Two derivative properties, molar enthalpy and heat capacity of water and ammonia have been calculated, and demonstrated the thermodynamic consistency of the EOS parameters. Also VLE calculations have been performed for 41 binary mixtures of different type of fluids, including those of interest in petroleum industry. The results indicated the high capability of the proposed EOS for calculating the thermodynamic properties of pure and fluid mixtures.  相似文献   

10.
11.
In this study, a modification is presented for van Laar model (van der Waals mixture theory) for association mixtures. The molecular association effects are considered in van der Waals mixture theory by adding two new steps to van Laar cycle. The excess Gibbs free energy function and corresponding activity coefficient equations are derived for presented model. In addition to general case when both components are associating fluids, model simplified for two interesting cases: (i) only one fluid is associating, (ii) two fluids are associating but only self-associated species exist in the mixture. This model also is used for VLE calculations for 16 different binary mixtures in which one or both components are associating fluids. Results of the presented model show satisfactory improvement over the nonassociating case for vapor liquid equilibrium (VLE) prediction.  相似文献   

12.
A recently proposed equation of state of the van der Waals type is applied to calculate phase equilibria in hydrogen-bonding, non-electrolytic systems. Association is accounted for by treating alcohols, acids, etc., as mixtures of associated species formed by up to 14 monomers. The method involves essentially one weakly temperature-dependent adjustable parameter per binary system.The calculations cover vapour-liquid equilibrium both at low and elevated pressure in binary systems formed by an associating substance and a non-associating compound such as a hydrocarbon or halogenated hydrocarbon. An attempt has been made to include all experimental data available for these systems in the literature. A number of calculations for ternary systems as well as of liquid-liquid equilibria are included, and a limited number of solvated systems are also treated.Owing to its single adjustable parameter, the method may be used to test existing experimental data and to predict such data.  相似文献   

13.
Association equations of state like SAFT, CPA and NRHB have been previously applied to many complex mixtures. In this work we focus on two of these models, the CPA and the NRHB equations of state and the emphasis is on the analysis of their predictive capabilities for a wide range of applications. We use the term predictive in two situations: (i) with no use of binary interaction parameters, and (ii) multicomponent calculations using binary interaction parameters based solely on binary data. It is shown that the CPA equation of state can satisfactorily predict CO2-water-glycols-alkanes VLE and water-MEG-aliphatic hydrocarbons LLE using interaction parameters obtained from the binary data alone. Moreover, it is demonstrated that the NRHB equation of state is a versatile tool which can be employed equally well to mixtures with pharmaceuticals and solvents, including mixed solvents, as well as phase equilibria in mixtures containing glycols. The importance of considering the solvation of CO2-water (in CPA) when the model is applied to multicomponent mixtures as well as of the multiple associations in heavy glycol-water mixtures (in NRHB) is investigated.  相似文献   

14.
We present an approach based on the statistical associating fluids theory (SAFT) to predict the solubility of amino acids in aqueous and aqueous-electrolyte solutions. This approach can describe the association interactions and their effects on the solubility of amino acids. Using the experimental data of activity coefficients of amino acids in water, the parameters of SAFT model for amino acids are obtained. The solubility of several amino acids in the temperature range of 273.15–373.15 K is predicted. Results obtained from the model are in a good accordance with the experimental data. Also, we examine the effect of pH on the solubility of dl-methionine. Addition of an extra amino acid to the binary solution of amino acid + water makes the system more complex. To check the accuracy of model, we study the ternary solution of dl-serine + dl-alanine + water and dl-valine + dl-alanine + water. Predicted results depict that the proposed model has the ability to describe the ternary solution of amino acids, accurately. Finally, the solubility of amino acids in aqueous-electrolyte solutions is investigated. The long-range interactions caused by the presence of ions affects the solubility of amino acids, leading them to be salted in or out. To treat this kind of interaction, the restrictive primitive mean spherical approximation (RP-MSA) is coupled with the SAFT equation of state. The proposed model can accurately predict the solubility of amino acids in aqueous-electrolyte solutions.  相似文献   

15.
A new general equation of state recently reported for pure liquids has been developed to predict the volumetric and thermodynamic properties of six binary and two ternary liquid refrigerant mixtures (including HCs and HFCs mixtures) at different temperatures, pressures, and compositions. The results show this equation of state can be used to reproduce and predict different thermodynamic properties of liquid refrigerant mixtures within experimental errors. The composition dependence of the parameters of this equation of state has been assumed as quadratic functions of mole fraction. Using these mixing rules, the agreement between calculated and experimental densities is better than 0.6% for binary mixtures and 2.3% for ternary mixtures. To compare the performance of this new equation of state against other well-known methods such as the COSTALD method, the density of some refrigerant mixtures, for which the parameters of COSTALD were available, has been computed and compared with those of this new equation of state.  相似文献   

16.
《Fluid Phase Equilibria》2004,217(2):233-239
The Perturbed-Chain SAFT (PC-SAFT) equation of state is applied to pure polar substances as well as to vapor–liquid and liquid–liquid equilibria of binary mixtures containing polar low-molecular substances and polar co-polymers. For these components, the polar version of the PC-SAFT model requires four pure-component parameters as well as the functional-group dipole moment. For each binary system, only one temperature-independent binary interaction kij is needed. Simple mixing and combining rules are adopted for mixtures with more than one polar component without using an additional binary interaction parameter. The ability of the model to accurately describe azeotropic and non-azeotropic vapor–liquid equilibria at low and at high pressures, as well as liquid–liquid equilibria is demonstrated for various systems containing polar components. Solvent systems like acetone–alkane mixtures and co-polymer systems like poly(ethylene-co-vinyl acetate)/solvent are discussed. The results for the low-molecular systems also show the predictive capabilities of the extended PC-SAFT model.  相似文献   

17.
Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.  相似文献   

18.
Association theories such as the CPA (cubic-plus-association), NRHB (non-random hydrogen bonding) equations of state and the various variants of SAFT (statistical associating fluid theory) have been extensively applied to phase equilibrium calculations. Such models can also be used for estimating the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol–alkane and similar mixtures. These data are useful for an understanding of the capabilities and limitations of association models. The purpose of this work is two-fold: (i) to compare the performance of three models, CPA, NRHB and sPC-SAFT, in predicting the monomer fraction of water, alcohols and mixtures of alcohol-inert compounds and (ii) to investigate whether “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure compounds and mixtures. The accuracy of experimental monomer fraction data is discussed, as well as the role of monomer fraction data in clarifying which association scheme should be used in these equations of state. The results reveal that the investigated association models (CPA, sPC-SAFT and NRHB) can predict, at least qualitatively correct, monomer fractions of associating compounds and mixtures. Only, small differences are observed between the models. In addition, it has been shown that, using a suitable association scheme, a single set of parameters can describe satisfactorily vapor pressures, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes.  相似文献   

19.
20.
《Fluid Phase Equilibria》1996,118(1):27-59
Chemical potential of an associating component is derived from cubic equation of state. It is separated in the rigorous way into effective physical part and excess of chemical contribution. The both parts of the chemical potential are given in form of explicit expressions, which does not need any cumbersome integration or differentiation. The simple expression for association equilibrium is derived. It depends only on repulsive term of EOS. The proposed method is applied for correlating VLE equilibria in binary mixtures and for prediction of pressure in ternary mixtures on basis of the constituent binary VLE data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号