首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The kinetics and mechanism of the reduction of the μ-adi-di[N,N′-bis{salicylideneethylenediaminatoiron(III)}] complex, [Fe2adi], by dithionate ion, S2O6 2?, have been investigated in aqueous perchloric acid at 29 °C, I = 0.05 mol dm?3 (NaClO4) and [H+] = 5.0 × 10?3 mol dm?3. Spectrophotometric titrations indicated that one mole of the reductant was oxidized per mole of oxidant. Kinetic profiles indicated first-order rate with respect to [Fe2adi] but zeroth-order dependence on [S2O6 2?]. The rate of reaction increased with increase in [H+], decreased with increased dielectric constant, but was invariant to changes in ionic strength of the medium. Addition of small amounts of AcO? and Mg2+ ions did not catalyse the reaction. A least-squares fit of rate against [H+]2 was linear (r 2 = 0.984) without intercept. The reaction was analysed on the basis of a proton-coupled outer-sphere electron transfer mechanism.  相似文献   

2.
A kinetic analysis of the oxidation of semicarbazide (SEM) by the single-electron oxidant [IrCl6]2? has been carried out by stopped-flow spectrometric techniques. The reaction proved to be first order each in [IrCl6 2?] and [SEM]tot, leading to overall second-order kinetics. The variation in the observed second-order rate constant k′ with pH was explored over the pH range of 0–7.11. Spectrophotometric titration revealed a stoichiometry of Δ[IrCl6 2?]/Δ[SEM]tot = 4:1 for the redox reaction. On the basis of the rate law, the redox stoichiometry, and the rapid scan spectra, a reaction mechanism is proposed which involves parallel attacks of [IrCl6]2? on both H2NCONHNH3 + and H2NCONHNH2 as rate-determining steps, followed by several rapid reactions. The rate expression, derived from the reaction mechanism, was utilized to simulate the k′–pH profile yielding a virtually perfect fit and indicating that the reaction path involving H2NCONHNH3 + does not make a significant contribution to the overall rate. The reaction between [IrCl6]2? and H2NCONHNH2 was further studied as a function of both temperature and ionic strength. From the temperature dependence, activation parameters were obtained as: ?H 2 ?  = 34.9 ± 1.5 kJ mol?1 and ?S 2 ?  = ?78 ± 5 J K?1 mol?1. The observed ionic strength dependence suggests that the rate-determining step is between [IrCl6]2? and a neutral species of SEM. Hence, both the temperature and ionic strength dependency studies are in good agreement with the proposed reaction mechanism, in which the rate-determining step involves an outer sphere electron transfer.  相似文献   

3.
The kinetic and mechanistic studies of homogeneously Rh(III)-catalysed oxidation of D-xylose and L-sorbose by Nbromoacetamide (NBA) in perchloric acid medium were carried out at 40 °C. The reactions were first-order with respect to each of [NBA], [Rh(III)] and [H+] and zero-order in [sugar]. Variation of [Cl?] showed positive effect while variation of [Hg(OAc)2] showed negative effect on the rate of the reactions. Addition of acetamide (NHA) had a negative effect on the rate of the reaction. The rate of the reaction was unaffected by the change in ionic strength (??) of the medium. Various activation parameters were calculated with the help of pseudo-first-order rate constant, k1, obtained at four different temperatures. The mechanisms involving RhCl4(H2O)2 ?, as reactive species of rhodium(III), and H2OBr+, as reactive species of NBA, are proposed which find support from the spectrophotometric evidence and activation parameters, especially the entropy of activation.  相似文献   

4.
The kinetics of oxidation of N,N‐dimethylformamide by chromium(VI) has been studied spectrophotometrically in aqueous perchloric acid media at 20°C. The rate showed a first‐order dependence on both [Cr(VI)] and [DMF], and increased markedly with increasing [H+]. The order with respect to [HClO4] was found to lie between 1 and 2. The rate was found to be independent of ionic strength as well as of any inhibition effect of Mn(II). The formation of superoxochromium(III) ion was detected in an aerated solution of chromium(VI), DMF and HClO4. The proposed mechanism, involving two reaction pathways, leads to the rate law, rate = Ka1 [HCrO4] [DMF] (kI Ka2 [H+]²+kII[H+]). The first pathway, with rate constant kI, involves the formation of chromium(V) and a free radical. The second pathway, with rate constant kII, involves the formation of Cr(IV), CO2 and dimethylamine. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 409–415, 1999  相似文献   

5.
A La(III) complex, [LaIIICl2(NOR)2]Cl (2), containing norfloxacin (NOR) (1), a synthetic fluoroquinolone antibacterial agent, has been synthesized and characterized by elemental analysis, IR, UV–vis spectra and 1H NMR spectroscopy, and molar conductance measurements. The interaction between 2 and CT-DNA was investigated by steady-state absorption and fluorescence techniques in different pH media, and showed that 2 could bind to CT-DNA presumably via non-intercalative mode and the La(III) complex showed moderate ability to bind CT-DNA compared to other La(III) complexes. The binding site number n, and apparent binding constant KA, corresponding thermodynamic parameters ΔG#, ΔH#, ΔS# at different temperatures were calculated. The binding constant (KA) values are 0.23 ± 0.05, 0.56 ± 0.05, and 0.18 ± 0.08 × 105 L mol?1 for pH 4, 7, and 11, respectively. It was also found that the fluorescence quenching mechanism of CT-DNA by La(III) complex was a static quenching process.  相似文献   

6.
The presence of ceric and bromide ions catalyzes the isomerization of maleic acid (MA) to fumaric acid (FA) in aqueous sulfuric acid. A kinetic study of this bromine-catalyzed reaction was carried out. The reaction between ceric ion and maleic acid is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M (adjusted by NaClO4), and [MA]0=(0.5–1.0)M, the observed pseudo-first-order rate constant (k03) at 25° is k03=7.622×10?5 [MA]0/(1+0.205[MA]0). The reaction between ceric and bromide ions is first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0=(0.025–0.150)M, the pseudo-first-order rate constant (k02) at 25° is k02= (4.313±0.095)x10?2[Br?]2+(2.060±0.119)x10?3[Br?]. The reaction of Ce(IV) with maleic acid and bromide ion is also first order with respect to Ce(IV). For [Ce(IV)]0=5.0×10?4 M, [MA]0=0.75 M, [H2SO4]0=1.2 M, μ=2.0 M, and [Br?]0= (0.025–0.150)M, the pseudo-first-order rate constant (k03) at 25° is k03= (5.286±0.045)x10?2[Br?]2+(3.568±0.056)x10?3[Br?]. For [Ce(IV)]0=5.0 × 10?4 M, [Br?]0=0.050 M, [H2SO4]0=1.2 M, μ=2.0 M, and [MA]0=(0.15–1.0)M at 25°, k03=(2.108×10?4+2.127×10?4[MA]0)/(1+0.205[MA]0). A mechanism is proposed to rationalize the results. The effect of temperature on the reaction rate was also studied. The energy barrier of Ce(IV)—Br? reaction is much less than that of Ce(IV)—MA reaction. Maleic and fumaric acids have very different mass spectra. The mass spectrum of fumaric acid exhibits a strong metastable peak at m/e 66.5.  相似文献   

7.
The kinetics of oxidation of DL-Aspartic acid (Asp) by N-bromophthalimide (NBP) was studied in the presence of sodium dodecyl sulfate (SDS) in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Asp] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant, that is, [Phthalimide] has decreased the rate of reaction. The rate of reaction increased with increase in inorganic salts concentration, whereas a change in [Cl?], ionic strength of the medium and [Hg(OAc)2] had no effect on the oxidation velocity. The rate of reaction decreased with a decrease in dielectric constant of the medium. COOH-CH2-CN was identified as the main oxidation product of the reactions. The various activation parameters have been computed. A suitable reaction mechanism consistent with the experimental findings has been proposed. The micelle-binding constant has been calculated.  相似文献   

8.
The equilibrium constant for the reaction CH2(COOH)2 + I3? ? CHI(COOH)2 + 2I? + H+, measured spectrophotometrically at 25°C and ionic strength 1.00M (NaClO4), is (2.79 ± 0.48) × 10?4M2. Stopped-flow kinetic measurements at 25°C and ionic strength 1.00M with [H+] = (2.09-95.0) × 10?3M and [I?] = (1.23-26.1) × 10?3M indicate that the rate of the forward reaction is given by (k1[I2] + k3[I3?]) [HOOCCH2COO?] + (k2[I2] + k4[I3?]) [CH(COOH)2] + k5[H+] [I3?] [CH2(COOH)2]. The values of the rate constants k1-k5 are (1.21 ± 0.31) × 102, (2.41 ± 0.15) × 101, (1.16 ± 0.33) × 101, (8.7 ± 4.5) × 10?1M?1·sec?1, and (3.20 ± 0.56) × 101M?2·sec?1, respectively. The rate of enolization of malonic acid, measured by the bromine scavenging technique, is given by ken[CH2(COOH)2], with ken = 2.0 × 10?3 + 1.0 × 10?2 [CH2(COOH)2]. An intramolecular mechanism, featuring a six-member cyclic transition state, is postulated to account for the results on the enolization of malonic acid. The reactions of the enol, enolate ion, and protonated enol with iodine and/or triodide ion are proposed to account for the various rate terms.  相似文献   

9.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The kinetics of the oxidation of cysteine and captopril via octacyanomolybdate(V) and octacyanotungstate(V) in a buffered acidic media (pH range 2.20–4.80) have been studied spectrophotometrically. The rate law for the oxidation is: Rate = k [RSH] [Ox] [H+]−1, where RSH is cysteine or captopril and Ox is Cs3[Mo(CN)8] or Cs3[W(CN)8]. The activation parameters (Ea, ΔH#, ΔG#, ΔS#) for the oxidation of cysteine and captopril via Cs3[Mo(CN)8] or Cs3[W(CN)8] have been determined. The results indicate that Cs3[Mo(CN)8] is more reactive than Cs3[W(CN)8] as an oxidizing agent. Effects of pH, ionic strength, temperature, dielectric constant of the reaction medium and copper(II) ions on the oxidation rate have been studied. Mechanisms for the oxidation of cysteine to cystine and captopril to the corresponding disulfide have been proposed.  相似文献   

11.
The kinetics of oxidation of DL-serine (Ser) by N-bromophthalimide (NBP) was studied in the presence of an anionic surfactant, sodium dodecyl sulfate, in acidic medium at 308 K. The rate of reaction was found to have first-order dependence on [NBP], fractional order dependence on [Ser] and inverse fractional order dependence on [H+]. The addition of reduced product of the oxidant [Phthalimide] and [Hg(OAc)2] has no effect on the rate of reaction. The change in ionic strength of the medium had no effect on oxidation velocity. The rate of reaction increased with increasing [Br?] and decreased with increasing [Cl?]. The rate of reaction decreased with decrease in dielectric constant of the medium. OHCH2CN was identified as the main oxidation product of the reactions. The various activation parameters have been computed. A suitable mechanism consistent with the experimental findings has been proposed. The micelle-binding constant has been calculated.  相似文献   

12.
Substitution reactions of trans-[CoCl2(en)2]Cl (where en?=?ethylenediamine) with L-cystine has been studied in 1.0?×?10?1?mol?dm?3 aqueous perchlorate at various temperatures (303–323?K) and pH (4.45–3.30) using UV-Vis spectrophotometer on various [Cl?] from 0.05 to 0.01?mol?L?1. The products have been characterized by their physico-chemical and spectroscopic data. Trans-[CoCl(en)2(H2O)]2+, from the hydrolysis of trans-[CoCl2(en)2]+ in the presence of Cl?, formed a complex with L-cystine at all temperatures in 1?:?1 molar ratio. L-cystine is bidentate to Co(III) through Co–N and Co–S bonds. Product formation and reversible reaction rate constants have been evaluated. The rate constants for SNi mechanism have been evaluated and activation parameters E a, ΔH #, and ΔS # are determined.  相似文献   

13.
The rate of oxygen exchange between trans-[Re(py)4O2]+ and solvent water in pypyH+ buffer solution follows simple first-order kinetics and both oxygens are equivalent. The half-life for isotopic oxygen exchange is about 12 h at a pH of 5.0, 25°C, and [py] = 0.10 M. The observed rate constant for exchange increases with acidity, in the pH range 4 to 6, decreases with [py], and is nearly independent of ionic strength. A small but significant increase of kobs occurs with increasing complex concentration. The rate of exchange follows the rate equation kobs/2 = k0 + k1/[py] with k0 = 1.4 × 10?5(2) s?1 and k1 = 4.7 × 10?7(1) M, s?1 at 25°C. The activation parameters for the reaction at pH = 7.15 (predominately the k0 term) are: ΔH* = +137.(1) kJ/M and ΔS* = +126.(1) J/MK. The pH effect and complex concentration effect are discussed in mechanistic terms. These results are compared to those found for [Re(en)2O2]+ and [Re(CN)4O2]3?.  相似文献   

14.
In aqueous H2SO4, Ce(IV) ion oxidizes rapidly Arnold's base((p-Me2NC6H4)2CH2, Ar2CH2) to the protonated species of Michler's hydrol((p-Me2NC6H4)2CHOH, Ar2CHOH) and Michler's hydrol blue((p-Me2NC6H4)2CH+, Ar2CH+). With Ar2CH2 in excess, the rate law of the Ce(IV)-Ar2CH2 reaction in 0.100 M H2SO4 is expressed -d[Ce(IV)]/dt = kapp[Ar2CH2]0[Ce(IV)] with kapp = 199 ± 8M?1s?1 at25°C. When the consumption of Ce(IV) ion is nearly complete, the characteristic blue color of Ar2CH+ ion starts to appear; later it fades relatively slowly. The electron transfer of this reaction takes place on the nitrogen atom rather than on the methylene carbon atom. The dissociation of the binuclear complex [Ce(III)ArCHAr-Ce(III)] is responsible for the appearance of the Ar2CH+ dye whereas the protonation reaction causes the dye to fade. In highly acidic solution, the rate law of the protonation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kobs[Ar2CH+] where Kobs = ((ac + 1)[H*] + bc[H+]2)/(a + b[H+]) (in HClO4) and kobs= ((ac + 1 + e[HSO4?])[H+] + bc[H+]2 + d[HSO4?] + q[HSO4?]2/[H+])/(a + b[H+] + f[HSO4?] + g[HSO4?]/[H+]) (in H2SO4), and at 25°C and μ = 0.1 M, a = 0.0870 M s, b = 0.655 s, c = 0.202 M?1s?1, d = 0.110, e = 0.0070 M?1, f = 0.156 s, g = 0.156 s, and q = 0.124. In highly basic solution, the rate law of the hydroxylation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kOH[OH?]0[Ar2CH+] with kOH = 174 ± 1 M?1s?1 at 25°C and μ = 0.1 M. The protonation reaction of Michler's hydrol blue takes place predominantly via hydrolysis whereas its hydroxylation occurs predominantly via the path of direct OH attack.  相似文献   

15.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

16.
The redox reaction between dicyanobis(bipyridine)iron(III) and iodide ion follows first‐order kinetics in 10% (v/v) tertiary butyl alcohol‐water. The reaction was found first and zero order in iodide and dicyanobis(bipyridine)iron(III), respectively, at 0.06 M ionic strength and 293 ± 1 K. The thermodynamic parameters of activation such as EA (16.07 kJ mol?1), A (1 × 10?4 M s?1), ΔH# (13.6 kJ mol?1), ΔS# (?329.81 J K?1 mol?1), and ΔG# (90.1 kJ mol?1) were determined. The effect of the ionic strength on the rate constant leads to recognizing the stabilization or destabilization of the transition state complex that forms during the rate‐determining step of the reaction. The value of the zero‐order rate constant was decreased with increasing ionic strength that yielded a negative value of the slope in each binary and ternary solvent systems. This negative sign refers to the electron transfer between opposite charge carriers such as [FeIII(bpy)2(CN)2]+ and I? during the rate‐determining step. The destabilization of the transition state complex is surfaced by the increasing slope, that is, 5 < 10 < 15% (v/v) tertiary butyl alcohol‐water with a gradual decrease in the rate constant. However, its stability emerges by relatively small values of the slope in 17.5 < 25 ≤ 30% (v/v) tertiary butyl alcohol‐water and 8:2:90 < 6:4:90% (v/v) dioxane: tertiary butyl alcohol: water with reasonably fast rate of reaction.  相似文献   

17.
The kinetics of the oxidation of malachite green (MG+) by Fe(III) were investigated spectrophotometrically by monitoring the absorbance change at 618 nm in aqueous and micellar media at a temperature range 20–40 °C; I = 0.10 mol dm?3 for [H+] range (2.50–15.00) × 10?4 mol dm?3. The rate of reaction increases with increasing [H+]. The reaction was carried out under pseudo-first-order conditions by taking the [Fe(III)] (>10-fold) the [MG+]. A mechanism of the reaction between malachite green and Fe(III) is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law as follows: Rate = (k 4 + K 1 k 5[H+]) [MG+][Fe(III)]. The effect of surfactants, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecylsulfate (SDS, an anionic surfactant), on the reaction rate has been studied. CTAB has no effect on the rate of reaction while SDS inhibits it. Also, the effect of ligands on the reaction rate has been investigated. It is proposed that electron transfer proceeds through an outer-sphere mechanism. The enthalpy and the entropy of the activation were calculated using the transition state theory equation.  相似文献   

18.
The kinetics of hydrogen peroxide decomposition has been investigated in the presence of Wofatit KPS (4% DVB, 40–80 μm) resin in the form of mono (mea), di (dea), triethanolamine (tea), ethylenediamine (eda), and N,N′-diethylethylenediamine (deeda)- Mn(II) complexes. The rate constant k (per g dry resin) was evaluated over the temperature range 25–40°C. The reaction was first-order with respect to [H2O2]. The rate constant, k, with the three ethanolamines decreased in the following order mea > dea > tea which is the same order of basicity. Also, k value with deeda is lower than eda as a result of steric hindrance. The peroxo metal complex which formed at the beginning of the reaction, was found to contain the catalytic active species. The rate of reaction was proportional to [Mn-complex], [H2O2] and [H+]?1. The activation parameters were calculated and a probable reaction mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

20.
The oxidative degradation of d-xylose by cerium(IV) has been found to be slow in acidic aqueous solution with the evidence of autocatalysis. The reaction is accelerated in the cetyltrimethylammonium bromide (CTAB) micellar medium but sodium dodecyl sulfate (an anionic surfactant) has no effect. The pseudo first-order rate constants have been determined at different [reductant], [oxidant], [H2SO4], temperature, and [CTAB]. The reaction rate increased with increasing [d-xylose] and decreased with increase in [H2SO4]. The CTAB-micelle-catalyzed kinetic results can be interpreted by the pseudophase model. The kinetic parameters such as association constant (K s), micellar medium rate constant (k m), and activation parameters (E a, ΔH # and ΔS #) are evaluated and the reaction mechanism is proposed. The reaction rate is inhibited by electrolytes and the results provide an evidence for the exclusion of the reactive species from the reaction site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号