首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation behavior of mixtures of the alkaline amino acid L ‐Arginine (L ‐Arg) and bis(2‐ethylhexyl)phosphoric acid (DEHPA) in water was studied in detail. At a fixed L ‐Arg concentration, a phase sequence of micellar phase (L1 phase), vesicle phase (Lαv phase), planar lamellar phase (Lαl phase), and sponge phase (L3 phase) was obtained with increasing DEHPA concentration due to changes in the packing parameter. The phase transition of the lamellar structures was determined by freeze‐fracture TEM and 2H NMR spectroscopy. Rheological measurements reflected the phase transition through significant variations of both the elastic modulus and the viscous modulus. Porous CeO2 materials were produced by utilizing the L3 phase as template, and the porous CeO2 exhibited excellent catalytic oxidation activity toward CO due to its high surface area, which provides more active sites for CO conversion.  相似文献   

2.
Enthalpies of dilution and osmotic coefficients of the sodium dodecyl-sulfate (NaDS)-dodecyldimethylamine oxide (DDAO) mixtures in water have been measured at 25 and 37°C, respectively. From the enthalpies of dilution the apparent molar relative enthalpies L were calculated. The change of the L vs. total molality mt profiles with the mole fraction reflects the variation of the ionic character of the mixed micelles. From the osmotic coefficients the nonideal free energy G 2 ni were calculated. By combining G 2 ni with the partial molar relative enthalpies, the nonideal entropies TS 2 ni were determined. At a given mole fraction, G 2 ni and TS 2 ni values are decreasing and increasing respectively, tending to become constant at high mt. The excess properties for the mixed micelle formation were evaluated as a function of the mixture composition at some mt. The profiles are compared with those obtained from thermodynamics of binary liquid mixtures and the regular solution theory.  相似文献   

3.
Adefovir dipivoxil (ADV) is an anti-viral drug having low bioavailability due to low permeability and pH dependent solubility. In this study, self-nanoemulsifying drug delivery systems (SNEDDS) of ADV were developed with the objective of increasing its bioavailability by enhancing its intestinal permeability and minimizing the effect of pH. Preliminary screening was carried out to select oil, surfactant and co-surfactant. Ternary phase diagrams were constructed to identify the area of nanoemulsification. The nanoemulsion system selected from the phase diagram was transformed into solid-SNEDDS (S-SNEDDS) by lyophilization using D-mannitol as cryoprotectant. The formulations were characterized for transmittance, globule size, polydispersity index, zeta potential, cloud point, robustness to dilution, effect of pH and temperature, microscopic properties, in vitro and ex vivo drug release parameters. The liquid SNEDDS (L-SNEDDS) showed mean globule size of 110 ± 10 nm while mean globule size of 150 ± 16 nm was obtained with S-SNEDDS. The formulations were found to be robust to dilution and showed cloud point at 80-85 °C. TEM and SEM studies of nanoemulsion reconstituted from S-SNEDDS demonstrated the spherical shape and size of the globules. Results of DSC and XRD studies confirmed that the drug was incorporated in the S-SNEDDS. No significant difference was observed in the globule size within physiological variations of pH and temperature. The in vitro and ex vivo drug release from ADV SNEDDS was found to be significantly higher in comparison to that from plain drug suspension, irrespective of pH. Thus, SNEDDS were found to be instrumental in reducing the effect of pH variability of ADV and improving the release performance of ADV, indicating their potential to improve the oral bioavailability and thus the therapeutic efficacy of ADV.  相似文献   

4.
Double-chain amphiphilic compounds, including surfactants and lipids, have broad significance in applications like personal care and biology. A study on the phase structures and their transitions focusing on dioctadecyldimethylammonium chloride (DODAC), used inter alia in hair conditioners, is presented. The phase behaviour is dominated by two bilayer lamellar phases, Lβ and Lα, with “solid” and “melted” alkyl chains, respectively. In particular, the study is focused on the effect of additives of different polarity on the phase transitions and structures. The main techniques used for investigation were differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). From the WAXS reflections, the distance between the alkyl chains in the bilayers was obtained, and from SAXS, the thicknesses of the surfactant and water layers. The Lα phase was found to have a bilayer structure, generally found for most surfactants; a Lβ phase made up of bilayers with considerable chain tilting and interdigitation was also identified. Depending mainly on the polarity of the additives, their effects on the phase stabilities and structure vary. Compounds like urea have no significant effect, while fatty acids and fatty alcohols have significant effects, but which are quite different depending on the nonpolar part. In most cases, Lβ and Lα phases exist over wide composition ranges; certain additives induce transitions to other phases, which include cubic, reversed hexagonal liquid crystals and bicontinuous liquid phases. For a system containing additives, which induce a significant lowering of the Lβ–Lα transition, we identified the possibility of a triggered phase transition via dilution with water.  相似文献   

5.
The influence of the sulfone drug, diamino diphenyl sulfone (DDS or dapsone) on the phase transitions and dynamics of the model membrane, dipalmitoyl phosphatidylethanolamine (DPPE)-water/buffer has been studied using DSC and (1H and 31P) NMR. These investigations were carried out with DPPE dispersion in both multilamellar vesicular (MLV) and unilamellar vesicular (ULV) forms for DDS/DPPE molar ratio, R, in the range 0-0.5. DSC results indicate that the mechanism by which DDS interacted with the DPPE membrane is independent of the morphological organization of the lipid bilayer and the solvent (water or buffer) used to form the dispersion. DDS affected both the thermotropic phase transitions and the molecular mobility of the DPPE membrane. Addition of increasing amounts of DDS to the DPPE dispersion, resulted in the lowering of the gel to liquid-crystalline phase transition temperature (Tm) hence increased membrane fluidity. At all concentrations, the DDS is located close to the interfacial region of the DPPE bilayer but not in the acyl chain region. The interesting finding with MLV is that the gel phase of DPPE-water/buffer both in presence and absence of DDS, on prolonged equilibration at 25 °C, transforms to a stable crystalline subgel phase(s). The DPPE-water system forms both crystalline subgel LLC (with transition temperature TLC < Tm) and LHC (with transition temperature THC ≥ Tm) phases, while the DPPE-buffer system forms only subgel LLC phase. The presence of the drug seems to (i) increase the strength of the subgel LLC phase and (ii) decrease the strength of subgel LHC (for R < 0.5) phase. However, the value of the transition temperatures TLC and THC does not change significantly with increasing drug concentration.  相似文献   

6.
Despite its proven efficacy in diverse metabolic disorders, quercetin (QU) for clinical use is still limited because of its low bioavailability. D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) is approved as a safe pharmaceutical adjuvant with marked antioxidant and anti-inflammatory activities. In the current study, several QU-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were investigated to improve QU bioavailability. A reversed phase high performance liquid chromatography (RP-HPLC) method was developed, for the first time, as a simple and sensitive technique for pharmacokinetic studies of QU in the presence of TPGS SNEDDS formula in rat plasma. The analyses were performed on a Xterra C18 column (4.6 × 100 mm, 5 µm) and UV detection at 280 nm. The analytes were separated by a gradient system of methanol and phosphate buffer of pH 3. The developed RP-HPLC method showed low limit of detection (LODs) of 7.65 and 22.09 ng/mL and LOQs of 23.19 and 66.96 ng/mL for QU and TPGS, respectively, which allowed their determination in real rat plasma samples. The method was linear over a wide range, (30–10,000) and (100–10,000) ng/mL for QU and TPGS, respectively. The selected SNEDDS formula, containing 50% w/w TPGS, 30% polyethylene glycol 200 (PEG 200), and 20% w/w pumpkin seed oil (PSO), showed a globule size of 320 nm and −28.6 mV zeta potential. Results of the pharmacokinetic studies showed 149.8% improvement in bioavailability of QU in SNEDDS relative to its suspension. The developed HPLC method proved to be simple and sensitive for QU and TPGS simultaneous determination in rat plasma after oral administration of the new SNEDDS formula.  相似文献   

7.
Four inductively coupled plasma mass spectrometric methods: nebulization sample introduction with external calibration; hydride generation with external calibration; isotope dilution with nebulization; and isotope dilution with hydride generation, have been tested and compared. Multimode Sample Introduction System (MSIS™) was employed in either nebulization or hydride generation mode. Best limits of detection (below 0.1 μg L 1) and accuracy were obtained for isotope dilution techniques in hydride generation and sample nebulization mode. A mixture of HNO3 and H2O2 served both for microwave-assisted digestion as well as a medium for subsequent plumbane generation. Optimal reagent concentrations for hydride generation stage were 0.1 mol L 1 HNO3, 0.28 mol L 1 H2O2 and 1.5% m/v NaBH4. Critical effects of acidity, blanks and concomitants have been discussed. Analytical methods were validated by use of plant and water certified reference materials and spiked high-salt solutions (seawater and 20% m/v NaCl) at lead levels in nanograms per gram to micrograms per gram range.  相似文献   

8.
The preparation of long‐term‐stable giant unilamellar vesicles (GUVs, diameter ≥1000 nm) and large vesicles (diameter ≥500 nm) by self‐assembly in THF of the crystalline‐b‐coil polyphosphazene block copolymers [N=P(OCH2CF3)2]nb‐[N=PMePh]m ( 4 a : n=30, m=20; 4 b : n=90, m=20; 4 c : n=200, m=85), which combine crystalline [N=P(OCH2CF3)2] and amorphous [N=PMePh] blocks, both of which are flexible, is reported. SEM, TEM, and wide‐angle X‐ray scattering experiments demonstrated that the stability of these GUVs is induced by crystallization of the [N=P(OCH2CF3)2] blocks at the capsule wall of the GUVS, with the [N=PMePh] blocks at the corona. Higher degrees of crystallinity of the capsule wall are found in the bigger vesicles, which suggests that the crystallinity of the [N=P(OCH2CF3)2] block facilitates the formation of large vesicles. The GUVs are responsive to strong acids (HOTf) and, after selective protonation of the [N=PMePh] block, they undergo a morphological evolution to smaller spherical micelles in which the core and corona roles have been inverted. This morphological evolution is totally reversible by neutralization with a base (NEt3), which regenerates the original GUVs. The monitoring of this process by dynamic light scattering allowed a mechanism to to be proposed for this reversible morphological evolution in which the block copolymer 4 a and its protonated form 4 a+ are intermediates. This opens a route to the design of reversibly responsive polymeric systems in organic solvents. This is the first reversibly responsive vesicle system to operate in organic media.  相似文献   

9.
Novel, biodegradable poly(?‐caprolactone)‐block‐poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(?‐caprolactone) triblock copolymers were synthesized by ring‐opening polymerization from dihydroxyl‐terminated macroinitiator poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline) (PHpr) and ?‐caprolactone (?‐CL) with stannous octoate as the catalyst. The molecular weights were characterized with gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. With an increase in the contents of ?‐CL incorporated into the copolymers, a decrease in the glass‐transition temperature (Tg) was observed. The Tg values of copoly(4‐phenyl‐?‐caprolactone) and copoly(4‐methyl‐?‐caprolactone) were higher than Tg of copoly(?‐caprolactone). Their micellar characteristics in an aqueous phase were investigated with fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The block copolymers formed micelles in the aqueous phase with critical micelle concentrations in the range of 1.00–1.36 mg L?1. With higher molecular weights and hydrophobic components in the copolymers, a higher critical micelle concentration was observed. As the feed weight ratio of antitriptyline hydrochloride (AM) to the polymer increased, the drug loading increased. The micelles exhibited a spherical shape, and the average size was less than 250 nm. The in vitro hydrolytic degradation and controlled drug release properties of the triblock copolymers were also investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4268–4280, 2006  相似文献   

10.
The enthalpies of dilution of aqueous solutions of [Co(en)3]Cl3 and [Co(tn)3Cl3 (where en=1,2-diaminoethane, and tn=1,3-diaminopropane) were measured at 278.15 K up to 1 mol kg-1, using a large isoperibolic calorimeter, with the 'long-jump' method. Relative apparent molar enthalpies, LΦ>, were extracted via an empirical equation relating LΦ> and molality. These new values were compared with previous results at 298.15 K on the same aqueous systems. Theoretical predictions were satisfied, but an unexpectedly broad divergence was found for such close temperatures. A tentative explanation is put forward. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A set of physicochemical methods was used to establish that aqueous solutions of chloracetophos fungicide and bactericide (1) in the range of calculated concentrations from 1?10–18 to 1?10–4 mol L–1 are disperse systems in which a dispersed phase hundreds of nanometers in size is formed above and below a threshold concentration of 1?10–9 mol L–1. Upon dilution disperse systems 1 are capable of non-monotonic changing the physicochemical properties and changing the toxicity profile (inhibition–stimulation) when influencing the growth and development of unicellular algae Chlorella vulgaris. The formation of domains and nanoassociates is accompanied by the appearance in the UV spectrum of an absorption band at 210–300 nm with a maximum at ~220 nm (A220). The interrelated concentration dependences of A220, the size of the dispersed phase, and electrical conductivity indicates that the observed spectral features of systems 1 are caused by the properties of the domains and nanoassociates.  相似文献   

12.
Poly(2‐hydroxyethyl acrylate)–poly(n‐butyl acrylate) block copolymers were synthesized with the reversible addition–fragmentation chain transfer (RAFT) process. The block copolymers were synthesized successfully with either poly(2‐hydroxyethyl acrylate) or poly(n‐butyl acrylate) macro‐RAFT agents. The resulting block copolymers had narrow molecular weight distributions (polydispersity index = 1.3–1.4). Copolymer self‐aggregation in water yielded micelles, with the hydrodynamic diameter (Dh) values of the aggregates dependent on the length of both blocks according to DhNBA1.17NHEA0.57, where NBA is the number of repeating units of n‐butyl acrylate and NHEA is the number of repeating units of 2‐hydroxyethyl acrylate. The micelles were subsequently stabilized via chain extension of the block copolymer with a crosslinking agent. The successful chain extension in a micellar system was confirmed by an increase in the molecular weight, which was detected with membrane osmometry. The crosslinked particles showed noticeably different aggregation behavior in diverse solvent systems. The uncrosslinked micelles formed by the block copolymer (NHEA = 260, NBA = 75) displayed a definite critical micelle concentration at 5.4 × 10?4 g L?1 in aqueous solutions. However, upon crosslinking, the critical micelle concentration transition became obscure. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2177–2194, 2006  相似文献   

13.
In the present study, we investigate the self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of SDS, CTAB, and mixed (SDS + CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), and Amin (the minimum area per surfactant molecule at the air/water interface)) of SDS, CTAB, and (SDS + CTAB) micellar/mixed micellar systems were evaluated. The thermodynamic parameters of the micellar (SDS and CTAB), and mixed micellar (SDS + CTAB) systems were evaluated.

A schematic representation of micelles and mixed micelles.  相似文献   

14.
The thermodynamics of the interaction of L-glutamic-N,N-diacetic acid (GLDA) with protons was studied potentiometrically at different temperatures, ionic strengths and ionic media. Four protonation constants and corresponding enthalpy changes occurred at infinite dilution together with temperature and ionic strength coefficients. The medium effect was also interpreted in terms of the formation of weak complexes between the ligand and the cations of supporting electrolytes, resulting in a greater tendency of GLDA to chemically interact with Na+ rather than K+ and, in turn, (CH3)4N+. Formation constants of GLDA with Cd2+ were determined in NaCl(aq) at different ionic strength values. Five complex species were found, namely CdL2−, CdHL, CdH2L0(aq), Cd2L0(aq), and Cd(OH)L3−, whose formation constant values at infinite dilution were log β = 12.68, 17.61, 20.76, 17.52, and 1.77, respectively. All the species results were relevant in the pH range of natural waters, although the Cd2L0(aq) was observed only for CCdCGLDA and concentrations of >0.1 mmol dm−3. The sequestering ability of GLDA toward Cd2+, evaluated by means of pL0.5, was maximum at pH~10, whereas the presence of a chloride containing a supporting electrolyte exerted a negative effect. Among new generation biodegradable ligands, GLDA was the most efficient in Cd2+ sequestration.  相似文献   

15.
The enthalpies of solution in water for five new light rare earth ternary complexes RE(Gly)4Im(ClO4)3 2H2O (RE = La, Pr, Nd, Sm, Eu; Gly‐glycine; Im‐imidazole) were measured by means of a Calvet microcalorimeter. The empirical formula of enthalpy of solution (ΔsolH), relative apparent molar enthalpy (πLi), relative partial molar enthalpy (Li) and enthalpy of dilution (ΔdllH1,2) were drawn up by the data of enthalpies of solution of these complexes. From three plots of the values of standard enthalpy of solution Δsol H?, πLi, Li) versus the values of ionic radius (r) of the light rare earth elements, the grouping effect of lanthanide was observed, showing that the coordination bond between rare earth ion and ligand possesses a certain extent of the property of a covalent bond. The standard enthalpies of solution in water of similar complexes, Ce(Gly)4Im(ClO4)3.2H2O were estimated according to the plot of ΔsolH?, versus r.  相似文献   

16.
Two new tetrathiafulvalene (TTF) derivatives of acetylacetone, namely, 3-[{6,7-benzo-2-(methylthio)-TTF-3-yl}-thio]-2,4-pentanedione (L1) and 3-[{6,7-(ethylenedithio)-2-(methylthio)-TTF-3-yl}-thio]-2,4-pentanedione (L2), have been synthesized. Four transition metal(II) complexes of these ligands, of general formulae [Zn(L1)2(THF)2] and [M(L2)2(THF)2] (M = Zn, Mn, and Ni), have been prepared and structurally characterized. The redox properties of both the ligands and their complexes were investigated by cyclic voltammetry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Peng Zheng and Yun-Jun Guo contributed equally to this work.  相似文献   

17.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

18.
The properties and phase behaviors of the catanionic mixtures consisting of tetradecyltrimetylammonium bromide (TTABr) and different anionic surfactants (i.e., sodium docanoate, C10HOONa; sodium laurate, C12HOONa; sodium perfluorodecanoate, C10FOONa) were examined, in particular when the molar mixing ratio in the aqueous solution was exactly 1:1. Although the three inspected systems have identical head groups and counterions, they exhibited very different lamellar (Lα) phases. When using the hydrogenated surfactants, the C10HOONa–TTABr system formed domain-like Lα/L1 two phases and the C12HOONa–TTABr system formed cream-like Lα/L1 two phases, respectively. In the case of the perfluorinated surfactant, the C10FOONa–TTABr system formed interdigitated and tilted Lα gel. The microstructures of the three Lα phases were characterized by polarized microscope, freeze-fracture transmission electron microscope, small angle X-ray scattering, and X-ray diffraction. The phase transition of the lamellar gel at different temperature was studied by differential scanning calorimetry and rheological measurements. The results elucidated the formation of the Lα phase in catanionic mixtures containing hydrogenated or fluorinated anionic surfactants with molar mixing ratio of 1:1.  相似文献   

19.
We have investigated the phase behavior and self-assembled structures of diglycerol monolaurate-and monomyristate (abbreviated as C12G2 and C14G2, respectivley) in olive oil over a wide range of temperatures and compositions. At lower temperatures, both the surfactants appear in solid state (α-solid), which does not swell with olive oil. The α-solid transforms into lamellar liquid crystal (Lα) phase upon heating and the solid melting temperature is practically constant at all surfactant/oil compositions, but the C12G2 melts earlier than the C14G2. There appear the dispersions of Lα phase and α-solid in the dilute regions of the C12G2/olive oil and the C14G2/olive oil systems, respectively, at 25°C. The Lα phase can solubilize some amount of olive oil, but as the oil concentration increases the excess oil separates out from the Lα phase, and there appears Lα dispersion in the dilute surfactant concentration region. The Lα phase eventually transforms into isotropic solutions (reverse micelles) with further heating. The structures (shape and size) of the reverse micelles have been characterized by small-angle x-ray scattering technique. It has found that the C12G2 and C14G2 surfactants form reverse rod-like micelles in olive oil above the Lα melting temperature and the micellar size increases with surfactant concentration, but decreases with temperatures.  相似文献   

20.
 2,3-Dibromo-6,7,13,14,15,16,22,23-octahydro-14,15-bis-(hydroxyimino)-tribenzo [e,k,q][1,4,7,10,13,16]tetraoxadiazacyclohexadecine (LH4) was prepared by condensation of 1,2-bis-(2′-aminophenoxyethoxy)-4,5-dibromobenzene with cyanogen-di-N-oxide. Mono-, di-, and trinuclear transition metal complexes of this ligand ((LH3)2Ni, (LH3)2Zn, (LH3)2Co, (LH3)2Cu, (LH3)2Fe, (LH3)2(UO2)2(OH)2, (LH)2Cu3, (LH)2Co3) were synthesized under basic conditions. The electrochemical properties of the mono- and dinuclear complexes were studied by cyclic voltammetry in DMSO solution containing TBAP. The results showed that all redox processes are based on the metal center and the oxime ligands stabilize the Ni(III), Fe(III), Co(III), and Cu(III) species formed during oxidation. The Fe(II) and U(VI)O2 complexes displayed a different behaviour: a reduction peak with the corresponding anodic signal during the reverse scan was observed. The oxime moiety also stabilizes U(V)O2 which forms during the reduction process of the uranyl complex. Cu(II) was adsorbed on the electrode surface upon scanning cathodically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号