首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
In order to improve poly(vinyl chloride) (PVC) thermal stability, poly(vinyl butyral) (PVB) matrix and calcium carbonate nanoparticles were incorporated in plasticized PVC. Thermal properties of these composites were investigated by thermogravimetry analysis coupled with mass spectrometry and Fourier transform infrared spectroscopy (FTIR). This approach highlighted the efficiency of both PVB and CaCO3 as HCl scavengers by postponing both the onset degradation temperature and the HCl release. Moreover, a synergetic effect was evidenced regarding the HCl release. Finally, kinetic parameters of the PVC first degradation stage, determined using the Flynn–Wall–Ozawa’s method, revealed a significant increase of the activation energy by incorporation of CaCO3 in the presence or not of PVB.  相似文献   

2.
The hyperbranched aliphatic polyester grafted calcium carbonate nanoparticles (HAPE‐CaCO3), was successfully prepared by the real one‐pot method. The AB2 monomer, 2,2‐bis(hydroxymethyl)propionic acid (bis‐MPA), was used as both the surface modifying agent and the monomer of the hyperbranched aliphatic polyester. It introduced the organic active group (hydroxyl group) onto the surfaces of the calcium carbonate nanoparticles (nano‐CaCO3) and its polycondensation took place subsequently, with the catalysis of p‐toluenesulfonic acid (p‐TSA). The HAPE‐CaCO3 had been characterized by elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), and transmission electron microscope (TEM).  相似文献   

3.
A novel double-hydrophilic block copolymer (DHBC) poly(vinyl pyrrolidone)–block–poly(methacrylic acid) (PVP-b-PMAA) was synthesized via reversible addition–fragmentation chain transfer polymerization. The structure of the resulting copolymer was characterized by 1H nuclear magnetic resonance, and the molecular weight of the block copolymer was determined by gel permeation chromatography. The study of morphological control of calcium carbonate (CaCO3) has been performed in the presence of the PVP-b-PMAA block copolymer. Various morphologies of CaCO3 particles such as rhombohedral, multilayered, and aggregated with cavities can be produced by varying the copolymer concentrations. The all-obtained CaCO3 particles were calcite, which was confirmed by either X-ray diffraction or Fourier transform infrared spectra. Such calcium carbonate/polymer hybrids with complex morphologies may find valuable applications in biomimic mineralization.  相似文献   

4.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   

5.
A Haake torque rheometer equipped with an internal mixer has been used to study the influence of microscale calcium carbonate (micro‐CaCO3) and nanoscale calcium carbonate (nano‐CaCO3) on the fusion, thermal, and mechanical characteristics of rigid poly(vinyl chloride) (PVC)/micro‐CaCO3 and PVC/nano‐CaCO3 composites, respectively. The fusion characteristics discussed in this article include the fusion time, fusion temperature, fusion torque, and fusion percolation threshold (FPT). The fusion time, fusion temperature, and FPT of rigid PVC/calcium carbonate (CaCO3) composites increase with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. In contrast, the fusion torque of rigid PVC/CaCO3 composites decreases with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. The results of thermal analysis show that the first thermal degradation onset temperature (Tonset) of rigid PVC/micro‐CaCO3 is 7.5 °C lower than that of PVC. Meanwhile, the glass‐transition temperature (Tg) of rigid PVC/micro‐CaCO3 is similar to that of PVC. However, Tonset and Tg of PVC/nano‐CaCO3 composites can be increased by up to 30 and 4.4%, respectively, via blending with 10 phr nano‐CaCO3. Mechanical testing results for PVC/micro‐CaCO3 composites with the addition of 5–15 phr micro‐CaCO3 and PVC/nano‐CaCO3 composites with the addition of 5–20 phr nano‐CaCO3 are better than those of PVC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 451–460, 2006  相似文献   

6.
Cellulose-ZnO composite was achieved by microwave assisted dissolution of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) followed by addition of premixed ground of Zn(CH3COO)2·2H2O and NaOH. Surface characterization, optical property and thermal stability of nanocomposite were determined by X-ray diffraction, scanning electron microscopy (SEM), UV–Vis spectroscopy and thermo gravimetric analysis. XRD patterns showed the ZnO in polymer matrix has the wurtzite structure. Presence of zinc oxide nanoparticles and cellulose fibers in the composites were observed by SEM. Band-edge transition of zinc oxide in the nanocomposite occurs in lower wavelength than bulk zinc oxide. Thermal stability of nanocomposite was lower than regenerated cellulose due to catalyst behavior of zinc oxide nanoparticles in cellulose matrix.  相似文献   

7.
The stabilization effect of calcium and zinc stearates (CaSt2/ZnSt2) combined with pentaerythritol (PeE) and organic tin on poly(vinyl chloride) was investigated. The results show that the addition of calcium/zinc stearates combined with PeE and organic tin can improve thermal and colour stability of poly(vinyl chloride) in both static and dynamic tests. Mechanisms for improving stability of PVC are also discussed. The increase of stabilizing effectiveness of calcium/zinc stearates is ascribed to the synergistic effect between CaSt2/ZnSt2 and PeE and the interaction between organic tin and double bonds formed during the degradation of PVC. There is no synergistic action between organic tin and PeE or organic tin and calcium/zinc stearates.  相似文献   

8.
Calcium carbonate nanoparticles (nano‐CaCO3) anchored graphene oxide (GO) sheet nanohybrids (GO‐CaCO3) are fabricated, and their structure can be measured by scanning electron microscope, transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction and Fourier‐transform infrared spectroscopy analysis. Afterwards, composite epoxy coatings, filled with GO and GO‐CaCO3 nanohybrids, are prepared via a curing process. The dispersion and anticorrosive properties of composite epoxy coatings are investigated. The results reveal that GO‐CaCO3 nanohybrids achieve a homogeneous dispersion as well as reinforce corrosion resistance of epoxy coatings. Furthermore, the anticorrosive mechanisms are tentatively proposed for the GO‐CaCO3/epoxy coatings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.  相似文献   

10.
The crystallization of calcium carbonate (CaCO3) controlled by Pluronic P123 in a room-temperature ionic liquid, ethylamine nitrate (EAN), was investigated. The CaCO3 aggregates were obtained by rapid mixing of ammonium carbonate ((NH4)2CO3) and calcium chloride (CaCl2). Cubic calcite, spherical vaterite, and bagel-like vaterite were obtained easily by changing P123 concentration and reaction temperature. The morphologies of the as-prepared CaCO3 aggregates were investigated by transmission electron microscopy and scanning electronic microscopy. The phase change of the obtained crystals was confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. It was shown that higher P123 concentration and higher reaction temperature favor the formation of vaterite in EAN. Unusual bagel-like vaterite was first obtained at 60 °C in the presence of 5 g/L P123 in EAN. Mineralization of CaCO3 regulated by P123 in EAN is a simple, novel, and environment-friendly strategy for vaterite synthesis.  相似文献   

11.
Thin‐film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg2+ into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg2+ in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg2+. Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg2+. The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.  相似文献   

12.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

13.
Nanoparticles of uncapped and PVA (poly vinyl alcohol) capped zinc oxide were synthesized by precipitation method. The synthesized ZnO nanoparticles were characterized by fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric-differential thermal analysis. The photocatalytic activity of bare and modified ZnO nanoparticles was studied by monitoring the degradation of Rhodamine B. The results show that PVA capped ZnO nanoparticles has reduced photocatalytic activity than the bare ZnO nanoparticles. The reduction in the chemical oxygen demand and total organic carbon results also revealed the reduced photocatalytic activity of PVA capped ZnO. The UV-shielding property was evaluated by measuring the transmittance which shows that both bare and PVA capped ZnO nanoparticles possess good UV-shielding ability.  相似文献   

14.
Experimental study on PVC-based materials (PVC = poly(vinyl chloride)) pyrolysis; in the presence of various amounts of steelmaking dust was performed. Dust from steel manufacture employing zinc plated scrap contains a considerable amount of zinc oxide (ZnO) and its utilization in metallurgy is quite complicated. However, the dust can react with hydrogen chloride (HCl) released from heated PVC in the temperature range of 200–400°C. Material balance of the pyrolysis process was studied by thermogravimetry, and the data obtained were compared with the results of larger laboratory oven experiments. In excess of PVC, the amount of captured HCl stoichiometrically corresponds to the content of ZnO; additional HCl is probably captured by FeCl2, while FeCl3 is not formed at elevated temperatures. In excess of the dust, the captured amount of HCl is approximately 100%. The suggested co-pyrolysis seems to be a promising method to prevent the formation of dangerous chlorinated organic compounds during the thermal treatment of waste PVC. Furthermore, the obtained ZnCl2 is a valuable material and the zinc depleted dust can be reused in metallurgy instead of its disposal.  相似文献   

15.
The effect of migration of calcium carbonate (CaCO3) nanoparticles on the breakup dynamics of Ethylene-Propylene-Diene Monomer (EPDM) droplets in Polypropylene (PP) matrix during melt extrusion was investigated in situ. The breakup process of EPDM droplets was sped up dramatically when the migration of CaCO3 nano-particles from dispersed phase to matrix was introduced to PP/EPDM melts. It was found that both the total breakup time and the shape stability of slender EPDM droplets decreased with the increase of CaCO3 concentration. Both the maximum value in equivalent diameter d and aspect ratio AR of EPDM droplets were also reduced by increasing the composition of CaCO3 nanoparticles. Results were discussed in consideration of interfacial tension and migration of CaCO3 nanoparticles. Reduction in interfacial tension is mainly responsible for the improved breakup process in the two-step composites with CaCO3 nanoparticles (<2 wt%). Higher composition of CaCO3 (≥2 wt%) induced the CaCO3 aggregates in the EPDM phase. These aggregates acted as stress concentration when the EPDM droplets break up.  相似文献   

16.
A detailed analysis of the effect of calcium carbonate nanoparticles on crystallization of isotactic polypropylene (iPP) is reported in this contribution. CaCO3 nanoparticles with different crystal modifications (calcite and aragonite) and particle shape were added in small percentages to iPP. The nanoparticles were coated with two types of compatibilizer (either polypropylene-g-maleic anhydride copolymer, or fatty acids) to improve dispersion and adhesion with the polymer matrix.It was found that the type of coating agent used largely affects the nucleating ability of calcium carbonate towards formation of polypropylene crystals. CaCO3 nanoparticles coated with maleated polypropylene can successfully promote nucleation of iPP crystals, whereas the addition of nanosized calcium carbonate coated with fatty acids delays crystallization of iPP, the effect being mainly ascribed to the physical state of the coating in the investigated temperature range for crystallization of iPP, as well as to possible dissolution by fatty acids of heterogeneities originally present in the polypropylene matrix.  相似文献   

17.
The gas phase over nanocomposites consisting of zinc carbonate hydroxide (ZCH) Zn2(OH)2CO3 · xH2O(x = 1, 3) dispersed in a NaCl matrix has been characterized by high-temperature mass spectrometry and on-line FTIR spectroscopy coupled with thermal analysis. Volatile zinc-sodium chloro complexes are in equilibrium with ZCH-rich nanocomposites at 20–700°C under mass spectrometric conditions. This is evidence that sodium chloride reacts readily with zinc oxide nanoparticles. The thermal events in the ZCH-NaCl (Li2CO3) system have been investigated by differential scanning calorimetry.  相似文献   

18.
A pyrolysis–gas chromatographic technique for measuring the amount of hydrogen chloride released during the high temperature pyrolysis of poly(vinyl chloride) resins, plastisols, copolymers and compounds containing inert fillers has been developed. The technique, which is also applicable to the analysis of chlorinated polyethylene and chlorinated poly(vinyl chloride), is based on the use of a standard precursor of HCl, poly(vinyl chloride) homopolymer. The analysis has been successfully used to measure the degree of in situ absorption of HCl during pyrolysis by certain basic fillers [K2CO3, CaCO3, CaO, MgO, Al(OH)3, Na2CO3, Al2O3 and LiOH] dispersed in a poly(vinyl chloride)–o-dioctyl phthalate matrix. Combustion of a number of combustion residues (chloride determination) revealed that the amount of HCl absorbed by the basic filler was independent of the method of degradation (pyrolysis or combustion). Flammability measurements of those matrices having the same composition indicate that in situ absorption of HCl during combustion has little effect on the overall flammability of these materials.  相似文献   

19.
The influences of nanosized CaCO3 on the thermal and optical properties embedded in poly(methyl methacrylate) (PMMA) and polystyrene (PS) were investigated. Calcium carbonate nanoparticles were synthesized by in situ deposition technique, and its nano size (32–35 nm) was confirmed by scanning electron microscope (SEM) and X-ray studies. Nanocomposites samples of PMMA/CaCO3 and PS/CaCO3 were prepared with different filler loading (0–4 wt%) of CaCO3 nanoparticles by solution mixing technique. The Fourier transform infrared analysis confirmed that CaCO3 nanoparticles were present in the polymers matrices. The morphology and elemental composition of nanocomposites were evaluated by SEM and energy dispersive X-ray spectroscopy. The thermal properties of nanocomposites were characterized by differential scanning calorimetric, thermogravimetric, and differential thermogravimetry analysis, and the results indicate that the incorporation of CaCO3 nanoparticles could significantly improve the thermal properties of PMMA/CaCO3 and PS/CaCO3 nanocomposites. The glass transition temperature (T g ) and decomposition temperature (T d ) of nanocomposites with 4 wt% of CaCO3 nanoparticles were increased by 30 and 24 K in case of PMMA/CaCO3 and 32  and 15 K in the case of PS/CaCO3 nanocomposites, respectively. The obtained transparent nanocomposites films were characterized using UV–Vis spectrophotometer which shows the transparencies of nanocomposites are almost maintained in visible region while the intensity of absorption band in ultraviolet (UV) region is increased with CaCO3 nanoparticles contents and these composites particles could enhance the UV-shielding properties of polymers.  相似文献   

20.
In the present investigation, novel poly(amid-imide)/zinc oxide nanocomposites (PAI/ZnO NCs) containing benzoxazole and benzimidazole pendent groups with different amounts of modified zinc oxide nanoparticles (ZnO NPs) were successfully prepared via the ex situ method. Poly(amid-imide) (PAI) was prepared by direct polycondensation of 2-[3,5- bis(N-trimellitimidoyl)phenyl]benzoxazole (DCA) with 5-(2-benzimidazole)-1,3-phenylenediamine (DAMI) and provided the polymeric matrix with well-designed groups. The surface of ZnO NPs was functionalized with 3-aminopropyltriethoxysilane (APS) coupling agent to have a better dispersion and enhancing possible interactions of NPs with functional groups of polymer matrix. The amount of APS bonded to the ZnO surface was determined by thermogravimetric analysis. PAI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. In addition, TGA data indicated an enhancement of thermal stability of the nanocomposite compared with the neat polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号