首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylamide prepared by dispersion (precipitation) polymerization in an aqueous t‐butyl alcohol (TBA) medium is only partially soluble when the TBA concentrations in the polymerization media are in the range 82 vol % < TBA < 95 vol %. Independent experiments with a soluble (linear) sample of polyacrylamide show that the polymer swells sufficiently in the aforementioned media to lower the glass‐transition temperature of the polymer below the polymerization temperature (50 °C). The anomalous solubility has been attributed to the crosslinking of polymer chains that occurs during the solid‐phase polymerization of acrylamide in the swollen polymer particles. It is postulated that some of the radical centers shift from the chain end to the chain backbone during solid‐phase polymerization by chain transfer to neighboring polymer molecules, and when pairs of such radicals come into close vicinity, crosslinking occurs. However, dispersion (precipitation) polymerization in other media such as aqueous methanol and aqueous acetone yields polymers that are soluble. This result has been attributed to the fact that the polymer radical undergoes a chain‐transfer reaction with these solvents at a much faster rate than with TBA, which overcomes the effect of the polymer‐transfer reaction. Even the addition of as little as 5% methanol to a TBA–water mixture (TBA:water = 85:10) gives rise to a soluble polymer. The chain‐transfer constants for acetone, methanol, and TBA have been determined to be 9.0 × 10?6, 6.9 × 10?6, and 1.48 × 10?6, respectively, at 50 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3434–3442, 2001  相似文献   

2.
Poly(glycidyl methacrylate) [poly(GMA)] microspheres of narrow size distribution were prepared in a simple one‐step procedure by dispersion radical polymerization. Depending on the solvent used, poly(GMA) particle size could be controlled in the range of 0.5–4 μm by changing the solubility parameter of the reaction mixture. In N,N′‐dimethylformamide (DMF)/methanol mixture, the particle size increased and the size distribution broadened with decreasing initial solubility parameter. While in the DMF/methanol solvent system, hydroxypropyl cellulose (HPC) or cellulose acetate butyrate (CAB) were taken as steric stabilizers of the dispersion polymerization, poly(vinylpyrrolidone) (PVP) was used in alcoholic media. Contrary to the DMF/methanol system, narrow particle size distributions were obtained with PVP‐stabilized polymerizations in ethanolic, methanolic, propan‐1‐olic or butan‐1‐olic medium. Both the particle size and polydispersity were reduced with increasing stabilizer concentration. If lower molecular‐weight PVP was used, larger microspheres were obtained. Poly(GMA) samples prepared in a neat alcoholic medium virtually quantitatively retained oxirane group content after the polymerization. Reactivity of the poly(GMA) microspheres was confirmed by their hydrolysis and aminolysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3855–3863, 2000  相似文献   

3.
A series of hydrophobically modified polyacrylamides and their hydrolyzed derivatives containing both long hydrophobic groups C18 (<1.2 mol%), and carboxylic groups (20 mol%) have been prepared by micellar polymerization at high monomer concentration (19 wt%) and post-hydrolysis. 1H and 13C NMR elucidation of polymer microstructures displayed a good agreement with feed ratio. Post-hydrolysis process seems to be a more effective route to control the hydrolysis degree. Physico-chemical parameters determination by automatic continuous mixing (ACM) techniques in dilute solution shows the effect of the blocky distribution on the reinforcement of intramolecular hydrophobic association. Rheological measurements show potential thickening properties according to sticky reptation model.  相似文献   

4.
Photoconductive poly(4-butyltriphenylamine) particles were prepared by a chemical oxidative dispersion polymerization. The utilization of statistical copolymer of methyl methacrylate with 2-hydroxyethyl methacrylate (30:70) as a dispersant afforded particles with the narrowest distribution when the other experimental conditions such as the rate of monomer feed, and the dispersant concentration were appropriately selected. Porous particles were obtained at 40 °C using poly(vinyl pyrrolidone) as a dispersant.  相似文献   

5.
《Mendeleev Communications》2020,30(6):731-733
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
  相似文献   

6.
The preparation of polyvinylpyrrolidone (PVP) microspheres in ethyl acetate by dispersion polymerization with N-vinylpyrrolidone (NVP) as initial monomer, poly(N-vinylpyrrolidone-co-vinyl acetate) (P (NVP-co-VAc)) as dispersant, and 2, 2′-azobisisobutyronitrile(AIBN) as initiator is reported. The influences of monomer concentration, dispersant concentration and initiator concentration on the size of PVP microspheres as well as the monomer conversion were studied. The structure and properties of PVP microspheres were analyzed. The results show that the prepared PVP microspheres have a mean diameter of 3-4 μm. With an increase in NVP concentration, the size and the molecular weight of the PVP microspheres as well as the monomer conversion all increase. With increasing P(NVP-co-VAc) concentrations, the PVP molecular weight and monomer conversion both increase while the size of the microspheres becomes smaller. As the concentration of AIBN increases, the microsphere size and monomer conversion increase whereas the PVP molecular weight decreases. The PVP prepared by dispersion polymerization has a crystal structure, and its molecular weight is lower compared to that prepared by solution polymerization. __________ Translated from Acta Polymerica Sinica, 2007, 11 (in Chinese)  相似文献   

7.
Dispersion polymerization of 2-hydroxyethyl methacrylate using four categories of polymeric stabilizers in a mixture of good and poor solvents was performed to produce polymeric particles. The stabilizers employed were methyl methacrylate and styrene homopolymers, methacryloyl-terminated poly(methyl methacrylate) and polystyrene macromonomers, an amphiphilic poly(methyl methacrylate-co-methacrylic acid-graft-styrene), and polybutadiene derivatives containing reactive vinyl groups. Dispersion copolymerization with a small amount of the macromonomer gave micron-size particles with relatively narrow size distribution. The amphiphilic graft copolymer and the polybutadiene derivatives also afforded monodisperse particles. The mixed ratio between good and poor solvents greatly affected the particle size and size distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Hydrophobically associating polymer (HAMDP) was synthesized by using acrylamide, acrylic acid, 2-acrylamido-2-methylpropane sulfonic acid and dodecyl 2-methylacrylate as main monomers. Dynamic rheometer and self-made simulation evaluation apparatus were used to test the rheological and drag reduction properties of HAMDP. With the mass concentration increased, the apparent viscosity of HAMDP increased. The critical aggregation concentration was 2.29g/L. With the changement of the strain, the elastic modulus was larger than viscous modulus. With the increment of HAMDP, the area of thixotropic loop increased. Compared with commercial polyacrylamide, the drag reduction rate of HAMDP could be up to 62.38%.  相似文献   

9.
Fine magnetite nanoparticles, both electrostatically stabilized and nonstabilized, were synthesized in situ by precipitation of Fe(II) and Fe(III) salts in alkaline medium. Magnetic poly(glycidyl methacrylate) (PGMA) microspheres with core‐shell structure, where Fe3O4 is the magnetic core and PGMA is the shell, were obtained by dispersion polymerization initiated with 2,2′‐azobisisobutyronitrile (AIBN), 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), or ammonium persulfate (APS) in ethanol containing poly(vinylpyrrolidone) or ethylcellulose stabilizer in the presence of iron oxide ferrofluid. The average microsphere size ranged from 100 nm to 2 μm. The effects of the nature of ferrofluid, polymerization temperature, monomer, initiator, and stabilizer concentration on the PGMA particle size and polydispersity were studied. The particles contained 2–24 wt % of iron. AIBN produced larger microspheres than APS or ACVA. Polymers encapsulating electrostatically stabilized iron oxide particles contained lower amounts of oxirane groups compared with those obtained with untreated ferrofluid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5827–5837, 2004  相似文献   

10.
11.
Narrow disperse microparticles are formed by dispersion polymerization of commercial divinylbenzene in acetonitrile or ethanol solution in the presence of 2,2′-azobis(2-methylpropionitrile) initiator and polyvinylpyrrolidone stabilizer. The particles have average diameters between 1 and 9 μm depending on monomer concentration, solvent, and temperature. While the smaller particles are relatively smooth, surface texture increases with diameter to give popcorn shapes at 9 μm diameter. High crosslinker concentration is shown to be essential for particle formation. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A novel bifunctional vinyl‐terminated polyurethane macromonomer was applied to the dispersion polymerization of styrene in ethanol. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The steep slope from the reduction of the average particle size reveals that the macromonomer can efficiently stabilize higher surface area of the particles when compared with a conventional stabilizer, poly(N‐vinylpyrrolidone). The stable and monodisperse PS microspheres having the weight‐average diameter of 1.2 μm and a good uniformity of 1.01 were obtained with 20 wt % polyurethane macromonomer. The grafting ratio of the PS calculated from 1H NMR spectra linearly increased up to 0.048 with 20 wt % of the macromonomer. In addition, the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal degradation temperature were obtained. Thus, these results suggest that the bifunctional vinyl‐terminated polyurethane macromonomer acts as a reactive stabilizer, which gives polyurethane‐grafted PS with a high molecular weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3566–3573, 2005  相似文献   

13.
A two-step swelling procedure was adopted to synthesize mono-dispersed and highly cross-linked poly (St-divinylbenzene) particles with PSt micro-spheres (1.80 μm in diameter). The PSt micro-spheres were prepared by a dispersion polymerization method and used as seeds. The effects of monomer concentration, ratio of ethanol to water, swelling reagents, crosslinking reagents, swelling temperature and agitation speed on particle size were investigated in detail. The morphologies and size distributions of these micro-spheres were examined by SEM and particle size analysis (PSA). The T g of the micro-spheres was measured by DSC. The results indicate that the particles (6.20 μm in diameter) exhibit excellent mono dispersed property and high crosslinking degree when the concentration of the swelling reagent was 25%, the concentration of the crosslinking reagents was 23%, the swelling temperature was 30°C and the stirring speed was 150 r/min. __________ Translated from Chinese Journal of Applied Chemistry, 2007, 24(11): 1289–1294  相似文献   

14.
1 Introduction In recent literature, several processes have been de-scribed to synthesize particles that consist of an inor-ganic core surrounded by a polymer shell. The tech-nique of polymer encapsulation is becoming more and more popular since polymer-e…  相似文献   

15.
Polystyrene (PSt)/poly (4-butyltriphenylamine; PBTPA) composite particles was prepared by a chemical oxidative seeded dispersion polymerization of (4-butyltriphenylamine) with PSt seed particles that were prepared by nonaqueous dispersion polymerization of styrene. Monodisperse composite particles were obtained when the ratio of monomer to seed, the rate of monomer feed, and poly(N-vinyl pyrrolidone; PVP) concentration was appropriately selected. The introduction of PBTPA was confirmed by the presence of the characteristic absorption band attributed to PBTPA from a Fourier transform infrared spectra. The solvent extraction with ethyl acetate revealed that composite particles consisted of PSt core and PBTPA shell. Then two-dimensional arrays of composite particles were also fabricated.  相似文献   

16.
A new method is applied to prepare stable aqueous dispersion of magnetic iron oxide nanoparticles (MNPs) by biocompatible maleate polymers. Fe3O4 magnetic core–shell nanoparticles are obtained via forming an inclusion complex between carboxylic acid groups of maleated biocompatible polymers shell and Fe3O4 MNPs core surface. Maleate polymers are synthesized via esterification of poly(ethylene glycol), poly(vinyl alcohol) and starch with maleic anhydride (MA). The Fe3O4 magnetic core–shell nanoparticles are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The obtained magnetic core–shell nanoparticles exhibit superparamagnetic property and reveal long‐term aqueous stability. This work represents a valid methodology to produce highly stable aqueous dispersion of Fe3O4 MNPs ferrofluids which can be expected to have great potential as contrast agent for magnetic resonance imaging. Furthermore, the shell composition of biocompatible maleate polymers with double bond of MA as crosslinker agent allows the polymerization with other monomers to design preferred drug delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Poly(2-hydroxyethyl methacrylate) particles in the micron size range were obtained by the dispersion polymerization. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and initiator, respectively. The ultimate particle size could be adjusted by the selection of a suitable polymerization medium consisting of an alcohol added to toluene and by varying their relative amounts. The particle size increased with increasing solubility parameter of the mixture, i.e., by decreasing the toluene/2-methylpropan-1-ol, toluene/butan-2-ol, and toluene/3-methylbutan-1-ol ratio. The particle size decreased with increasing concentration of the stabilizer and/or initiator. At the same time, the particle size distribution became narrower. Particles prepared from polymerization mixtures purged with nitrogen before the start of polymerization were smaller, and of narrower distribution, than those prepared from nitrogen-non-purged mixtures. Equilibrium swelling of particles in toluene decreased with the decreasing content of toluene in the polymerization mixture. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3785–3792, 1999  相似文献   

18.
Monodisperse polystyrene microspheres with diameters of 200–500 nm were prepared by dispersion polymerization with microwave irradiation with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator in an ethanol/water medium. The morphology, size, and size distribution of the polystyrene microspheres were characterized with transmission electron microscopy and photon correlation spectroscopy, and the formed films of the polystyrene dispersions were characterized with atomic force microscopy. The effects of the monomer concentration, stabilizer concentration, and initiator concentration on the size and size distribution of the polystyrene microspheres were investigated. The polystyrene microspheres prepared by dispersion polymerization with microwave irradiation were smaller, more uniform, and steadier than those obtained with conventional heating. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2368‐2376, 2005  相似文献   

19.
聚醚树枝体-聚丙烯酸嵌段共聚物的水溶液自组装行为   总被引:4,自引:0,他引:4  
应用UV-Vis、荧光、光物理探针、动态激光光散射和透射电镜(TEM)方法研究了聚醚树枝体与聚丙烯酸两亲嵌段共聚物(Dendr,PE-PAA)在水溶液中分子自组装行为。实验结果表明通过聚醚树枝体嵌段的疏水作用,易缔合形成聚集体,具有很低(10^-6~10^-7mol·L^-1)的临界缔合浓度(cac)。透过电镜观察到聚集体具有双层膜结构的球状、单室囊泡。临界缔合浓度(cac)以及聚集体的大小对枝状体的代数(Gi)及线性体的聚合度(n)具有明显的依赖关系。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号