首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective solution to separate oil and water is urgently needed owing to the increasingly serious problem of oil pollution. Numerous studies have been done to endow ordinary materials with extreme wettability for oil/water separation. Unfortunately, most of these materials cannot work in harsh environments, resulting in the low stability and practicability in practice. Herein, a facile method was proposed to fabricate superhydrophilic and underwater superoleophobic mesh by immersing ordinary mesh in a mixture of sulfuric acid (H2SO4) and chromium trioxide (CrO3). After immersing for just 1?min, the mesh was endowed with superhydrophilicity (CA?=?0°) and underwater superoleophobicity (hexane CA?=?151°, SA?=?14°). Increasing the immersion time to 3?min, the prepared mesh exhibited better superoleophobicity. A separation device was developed based on the prepared mesh and the separation efficiencies for diverse oil/water mixtures containing acid, alkaline, salt and hot water were above 95%. The device retained a high efficiency after being reused for 20 times and the prepared mesh maintained superoleophobicity after immersing underwater for 72?h and abrasion test of 100 cycles. This oil/water separation method is easy-to-use, inexpensive, power-free and it can be used to separate caustic oil/water mixtures.  相似文献   

2.
Oil/water separation polyurethane sponge with hierarchically structured surface similar to the chemical/topological structures of lotus leaf has been successfully developed by combining mussel-inspired one-step copolymerization approach. The chemical structure, surface topography, and surface wettability of the sponge were characterized by FTIR, SEM, and contact angle experiments, respectively. The results showed that as-prepared sponge exhibited high oil absorption rate because of the expansion in oil and collapse in water of the polymer molecular brushes. Meanwhile, it also possessed high absorption capacity (20 times of the self-weight), high oil retention (93.7%), and good recyclability. It had excellent potential in practical applications.  相似文献   

3.
4.
Robust superhydrophobic surface exhibiting anti-fouling and self-cleaning ability were successfully fabricated by nano TiO2 modified by γ-aminopropyltriethoxysilane (KH550) and polydimethylsiloxane (PDMS) via wire rod coating. Due to the lower surface energy of PDMS and the hierarchical structure caused by the different aggregation sizes of TiO2 nanoparticles, the contact angle of the resulting superhydrophobic coating was 154.5° and the rolling angle was 3.5°. And the coated paper still had good non-wettability under water immersion. In addition, the coated paper was tolerant to mechanical damage and various temperature conditions. Even after 40 sandpaper wear cycles, the coating can still maintain good mechanical stability and superhydrophobicity. The superhydrophobic paper was used for oil-water separation, the separation efficiency was about 98% even after used 10 times. Furthermore, the prepared superhydrophobic paper exhibited excellent self-cleaning and anti-fouling properties, as well as demonstrated superb resistance to various water solutions owing to its high hydrophobicity. Moreover, the prepared superhydrophobic paper has application prospects in the industry of special wetting materials.  相似文献   

5.
A series of emulsion‐templated fluorinated polymers (polyHIPEs) were first synthesized with introducing 2‐(perfluorohexyl)ethyl methacrylate (PEM) to the external phase of water‐in‐styrene high internal phase emulsion (HIPE) templates. The morphology (i.e., void size and its distribution) of these porous materials could be tuned simply by changing PEM and/or surfactant amount. The synergistic effect between the surface chemistry and surface architecture allowed the polyHIPEs to possess hydrophobicity with a water contact angle of 151°. The superhydrophobicity and oleophilicity of the polyHIPEs, together with their highly open porous structure, make the material a very competitive candidate as a filtration material for oil/water separation in practice with the efficiency of separating dichloromethane from the oil/water mixture of 95%. Such oil/water separating capacity was maintained after 10 cycles of filtration of oil/water, indicating the cyclic usage of the polyHIPE is feasible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1508–1515  相似文献   

6.
亚表面引发聚合是一种用于制备共价嵌入型聚合物刷的新型改性策略.该方法在发展高稳定性聚合物刷功能化表界面材料方面具有显著的优势.本工作利用亚表面引发原子转移自由基聚合(sSI-ATRP)对静电纺丝聚丙烯腈(PAN)基纳米纤维膜进行亚表面改性,通过接枝聚N-异丙基丙烯酰胺(PNIPAM)制备了温度响应型纳米纤维油水分离膜(...  相似文献   

7.
In this work, we used cellulose nanofibers (CNF) as the skeleton, Fe3O4@ZnO composite particles as magnetic synergist particles, 3-(2-aminoethylamino) propyltrimethoxysilane (AS) and trimethoxy(octyl)silane (OTMS) as water-based hydrophobic modifiers to prepare magnetic and superhydrophobic cellulose nanofibers based-aerogel with low density and intricate three-dimensional structure. Fe3O4@ZnO confers magnetic properties (3.82 emu/g) and exceptional thermal stability (water contact angle of 150.1° at 200 °C) to the system, while the combination with OTMS/AS endows the system superhydrophobic (157.5°) and excellent mechanical properties (stress of 96.95 kPa at 80% strain). It is worth noting that in the process of modifying the system with OTMS/AS, no organic solvents and acidic substances are used in the solution. Benefiting from their synergies, the system demonstrates a notable oil absorption capacity (12.31–41.91 g/g) and outstanding oil selectivity (exceeding 90%), driven by gravity alone. Interestingly, this system, marked by its cost-effectiveness, simplicity, eco-friendliness, and heightened efficiency, holds promising prospects for diverse applications in different oil–water separation behavior and purifying industrial oil wastewater, as well as oil flooding incidents.  相似文献   

8.
The crude oil is in most cases accompanied with water and natural gas. For this reason, it is important to understand the rheology of the oil emulsion. There are already many works relating to rheology of the oil/water emulsion. However, studies on high-pressure rheology of water/crude oil emulsion in the presence of CH4 are rare. In this work, light crude oil with characteristics of high wax content, which is typical in Northwest China, was studied. The rheology of water/crude oil emulsion in the presence of CH4 under various conditions were fully studied. The results show that the crude oil emulsion showed obvious characteristics of non-Newtonian fluid at a lower temperature. Before water fraction reached a certain limit, the viscosity increases with the increase of water fraction, when water fraction reaches and exceeds the limit the emulsion viscosity drops with the increase of water fraction. The shear stress–shear rate curves become similar as the increase of temperature, indicating the decreasing effect of temperature on the relation between shear stress and shear rate. When the pressure reaches 8 MPa, the shear stress measured with CH4 in the system surpasses that measured without CH4. At higher pressure, CH4 shows obvious influence on the rheology.  相似文献   

9.
《先进技术聚合物》2018,29(8):2317-2326
We develop a new strategy for the continuous separation of oil from water surface using a novel tubular unit based on graphene coated polyurethane (P‐GEPU) sponge, and the P‐GEPU sponge was fabricated by a simple dip‐coating method; the as‐prepared sponges could adsorb different kinds of oil and organic liquids while repelling water. Moreover, the tubular unit was assembled by wrapping the P‐GEPU sponge on a porous PU hollow tube and combined with the accessories including pipes and joints. The tubular unit could float on the surface of water, and a continuous oil collection from water surface through vacuum pressure could be fulfilled, showing a high oil‐water separation efficiency (>96%). Finally, oil‐water separation efficiency remains above 93% after 10 cycles, exhibiting excellent reusability. In addition, our findings are easily scaled up, showing a great promise for large‐scale oil spill remediation.  相似文献   

10.
A novel oily wastewater treatment strategy of simultaneously removing insoluble oily compounds and soluble organic pollutants is highly desirable. Herein, a hierarchical Ag2O/TiO2 heterojunction-loaded CuC2O4 nanosheet-decorated copper mesh (Ag2O/TiO2@CuC2O4 CM) was rationally designed by a combination of chemical etching and solvothermal deposition methods to implement the strategy. The Ag2O/TiO2@CuC2O4 CM with hierarchical nanostructures derived from hydrophilic CuC2O4 nanosheets and belt-like Ag2O/TiO2 heterojunction was proven to exhibit superior superhydrophilicity, underwater superoleophobicity, and photocatalytic ability, which greatly improved the antipollution ability of the substrate mesh. The as-fabricated mesh with a reasonable mesh number can efficiently separate oil/water mixtures with an ultra-high flux (~70 kL m?2 h?1) and surfactant-stabilized oil-in-water emulsions with an ultra-low residue oil content in filtrate (<60 mg L?1). More importantly, the loaded heterojunction on the CM showed a high photodegradation efficiency of about 94.1% toward soluble methylene blue and self-cleaning ability to regenerate oil-contaminated mesh within 60 min under visible light irradiation by photo-Fenton-like reaction. Besides, the favorable salt resistance, acid and alkali resistance, and stability of the CM for long-term use were also observed. Thus, this study provides a new way for the treatment of complex oily wastewater.  相似文献   

11.
随着工业的发展,油水污染日渐严重,特别是石油的泄露、有机化学品的排放对生态环境造成了难以挽救的损害。因此,开发新型高效的油水分离材料与技术是一个极为重要的任务。特殊润湿性油水分离材料的出现,为科研人员指明了道路。本文以用于油水分离的特殊润湿性材料为研究体系;首先,对具有特殊润湿性油水分离材料的基本理论和设计理念进行分析;然后介绍了通过调控材料表面的微观结构和表面化学组成制备特殊润湿性材料实现不同的油水分离效果的研究进展,并且尝试从微纳米尺度上揭示特殊润湿性材料的特征,形成从微纳米尺度上揭示油水分离用材料化学品结构特征的技术基础。最后指出了目前在油水分离用功能材料化学品这一领域存在的一些问题,并对这一领域的发展趋势进行展望。  相似文献   

12.
13.
Interfacial tension of alkylglucosides in different APG/oil/water systems   总被引:2,自引:0,他引:2  
The interfacial performance of pure alkylglucosides (C8G1, C10G1 and C12G1) and of technical grade alkylpolyglucoside (APG) surfactants was investigated in three different water/oil systems (decane, isopropylmyristate and 2-octyldodecanol). From the dependence of the interfacial tension on the surfactant concentration below the CMC the cross-sectional area of the molecules at the decane/water interface was estimated. The plateau values of the interfacial tension at the CMC c are independent of temperature and almost independent of added electrolyte in the decane/water system. The ability of the surfactants to lower the oil/water interfacial tension is most pronounced for the nonpolar oil. The partition coefficient of the surfactant between oil and water phase (k c) was estimated from the CMC and the observed break point of the interfacial tension after equilibration of the two phases. In decane/water,k c is nearly zero for all surfactants studied. For the polar oils,k c increases with the chain length of the surfactant up tok c10 for C12G1 in octyldodecanol/water. The values of c in the different oil/water systems appear to be correlated withk c and exhibit a minimum neark c=1.  相似文献   

14.
In the present study, we have performed molecular dynamics simulations to describe the microscopic behaviors of the anionic, nonionic, zwitterion, and gemini surfactants at oil/water interface. The abilities of reducing the interfacial tension and forming the stable interfacial film of the four surfactants have been investigated through evaluating interfacial thickness, interface formation energy and radial distribution function. The results show that the four kinds of surfactants can form in stable oil/water interface of monolayer, and the gemini surfactant can form the more stable monolayer. The results of the above three parameters demonstrate that the gemini surfactant has the best simulation effect in the four surfactants. From the calculated interfacial tension values, the gemini surfactant possess the more powerful ability of reducing the interfacial tension than others, so it is more suitable to be used as the surfactant for flooding. In addition, the effects of different electric field intensities on surfactants were calculated, through the radial distribution function of the hydrophilic group in the surfactant and the oxygen atom in the water. We have found that the adding of the periodic electric field can significantly affect the diffusion behavior of the molecules, and nonionic surfactant has stronger demulsification capability than others.  相似文献   

15.
We report layer-by-layer approaches to the design of superhydrophobic and superoleophilic substrates for the filtration- or absorption-based separation of bulk oil from oil/water mixtures. Fabrication of covalently cross-linked, nanoporous polymer multilayers on mesh substrates yielded superhydrophobic and superoleophilic porous media that allow oil to pass, but completely prevent the passage of bulk water. This approach can be used to promote the filtration of oil/water mixtures, and these film-coated substrates can be bent and physically manipulated without affecting oil- and water-wetting properties. Fabrication on three-dimensional macroporous polymer pads yielded flexible objects that float on water and absorb oil at contaminated air/water interfaces. This approach permits oil to be recovered by squeezing or rinsing with solvent and the reuse of these materials without decreases in performance. These pads can also absorb oil from simulated seawater, brine, and other media representative of marine or industrial contexts where oil contamination can occur. Our results address issues associated with the design of polymer-based coatings for the separation, removal, and collection of oil from oil-contaminated water. With further development, this approach could provide low-energy alternatives to conventional remediation methods or yield new strategies that can be implemented in ways that are impractical using current technologies. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3127–3136  相似文献   

16.
Potential fouling reducing coating materials were synthesized via free-radical photopolymerization of aqueous solutions of poly(ethylene glycol) diacrylate (PEGDA). Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization water mixture, going from 10 to 150 L μm/(m2 h bar) as prepolymerization water content increased from 60 to 80 wt.%. However, molecular weight cutoff decreased as water content increased. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes.  相似文献   

17.
Oil/water emulsion separation in harsh environments remains a big challenge. Herein, a double layered nanofibrous composite membrane was developed by assembly of polydopamine‐modified hexagonal boron nitride (h‐BN‐PDA) onto a poly(arylene ether nitrile) (PEN) nanofibrous mat. Owing to the synergistic effect of a h‐BN‐PDA skin layer and a PEN nanofibrous mat supporting layer, as‐prepared composite membrane exhibited high thermal stability, corrosion resistance, and superhydrophilic/underwater superoleophobic property. Consequently, the PEN composite membrane showed good antifouling performance and a high rejection ratio (>99.0%) for various oil/water emulsions. After 10 cycles, the separation flux of PEN composite membrane still reached 588.1 L/m2 h under the operating pressure of 0.04 MPa. Furthermore, the PEN composite membrane could still achieve high separation efficiency and high flux in high‐temperature (65 °C) and strongly corrosive conditions (pH = 1‐13). Therefore, the stable and efficient h‐BN‐PDA/PEN composite membrane showed potential application for treating oily wastewater in harsh environments.  相似文献   

18.
《先进技术聚合物》2018,29(10):2619-2631
In the present work, development of neat and nanocomposite polyethersulfone membranes composed of TiO2 nanoparticles is presented. Membranes are fabricated using nonsolvent phase inversion process with the objective of improving antifouling, hydrophilicity, and mechanical properties for real and synthetic produced water treatment. Membranes are characterized using scanning electron microscopy, Fourier‐transform infrared, contact angle, porosity measurement, compaction factor, nanoparticles stability, and mechanical strength. The performance of prepared membranes was also characterized using flux measurement and oil rejection. Fourier‐transform infrared spectra indicated that noncovalence bond formed between Ti and polyethersulfone chains. The contact angle results confirmed the improved hydrophilicity of nanocomposite membranes upon addition of TiO2 nanoparticles owing to the strong interactions between fillers and water molecules. The increased water flux for nanocomposite membranes in comparison with neat ones can be due to coupling effects of improved surface hydrophilicity, higher porosity, and formation of macrovoids in the membrane structure. The membrane containing 7 wt% of TiO2 nanoparticles was the best nanocomposite membrane because of its high oil rejection, water flux, antifouling properties, and mechanical stability. The pure water flux for this membrane was twice greater than that of neat membrane without any loss in oil rejection. The hydrophilicity and antifouling resistance against oil nominates developed nanocomposite membranes for real and synthetic produced water treatment applications with high performance and extended life span.  相似文献   

19.
任金瓶  陶芙蓉  崔月芝  刘利彬 《应用化学》2019,36(12):1361-1370
本文总结了纤维素基材料在油/水分离方面应用的研究进展。 以不同润湿性表面在油/水分离中的应用为切入点,介绍了3种不同的纤维素基油/水分离材料, 并结合作者所在课题组的研究工作,重点介绍了智能响应型油/水分离材料。 同时也总结了纤维素基超润湿材料在油/水分离之外的应用。 文章最后展望了纤维素基超润湿材料未来的研究方向并提出了亟待解决的问题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号