首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

2.
ABSTRACT

Anodic inhibition of steel in 8?mol?L?1 H3PO4 was investigated in the absence and presence of different concentrations of extracts of Lawsonia inermis. An experimental measurement, including galvanostatic polarization studies, was done. The anodic corrosion rate and the inhibition efficiencies of the extract were calculated. The results obtained show that the inhibition was found to increase with increasing concentration of Lawsonia inermis extract. The inhibition actions of extracts are discussed on the basis of adsorption of Lawsonia inermis at the steel surface. Theoretical fitting of different isotherms were tested to clarify the nature of adsorption. Polarization curves revealed that Lawsonia inermis inhibitor acts as a corrosion inhibitor. The activation energy (Ea) as well as other thermodynamic parameters (ΔH*, ΔS*, ΔG*) for the inhibition process were calculated. These thermodynamic parameters show strong interaction between the inhibitor and the steel surface. The scanning electron microscope analysis study confirmed the adsorption of inhibitor molecules on the steel surface. The social organization and morphology of the extract were characterized by Fourier transform infrared spectroscopy.  相似文献   

3.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules.  相似文献   

4.
The efficiency of Acacia cyanophylla leaves extract as an environmentally friendly inhibitor for mild steel in aerated aqueous 1 M H2SO4 solution has been investigated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy techniques. Addition of inhibitor decreases the corrosion current whereas the corrosion potential values show slight shifts in positive directions. Inhibition efficiency was found to be about 93% (the maximum value was determined from the polarization curve). Efficiencies obtained from both electrochemical techniques are in good agreement. Adsorption of Acacia cyanophylla leaves extract on mild steel surface in 1 M H2SO4 solution obeys Langmuir adsorption isotherm. Polarization curves were also obtained at different temperatures in order to measure changes of corrosion rate. Corrosion current increases and inhibition efficiency decreases with temperature increasing in H2SO4 solutions with and without Acacia cyanophylla extract. Corrosion parameters also changed with exposure time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The inhibiting effect of aqueous extracts of Funtumia elastica (FE) on mild steel corrosion in 1 M HCl solution was investigated using electrochemical and surface characterization techniques. The results revealed that FE effectively inhibited the corrosion reaction. Polarization data reveal that the extract functioned as a mixed-type inhibitor, while impedance results show that the extract organic matter gets adsorbed on the metal/solution interface. Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy results confirmed the formation of a protective layer of extract adsorbed on the mild steel surface. Adsorption of some organic constituents of FE on mild steel was theoretically described by quantum chemical computations and molecular dynamics simulations, in the framework of the density functional theory.  相似文献   

6.
Abstract

The inhibitive and adsorptive characteristics of ethanol extract of Gnetum Africana for the corrosion of mild steel in H2SO4 solutions have been studied using weight loss, gasometric, thermometric, and IR methods of monitoring corrosion. Ethanol extract of Gnetum Africana is a good adsorption inhibitor for the corrosion of mild steel in H2SO4. The inhibitive property of the extract is attributed to the presence of alkaloid, saponin, tannin, terpene, anthraquinone, cardiac glycoside, and alkaloid in the extract. The adsorption of the inhibitor on mild steel surface is exothermic, spontaneous and is consistent with the mechanism of physical adsorption. In addition, Langmuir and Temkin adsorption isotherms best described the adsorption characteristics of the inhibitor. Efforts to improve the adsorption of the inhibitor through synergistic combinations with halides indicated that only KCl may enhance the efficiency of the inhibitor. The study provides information on the use of ethanol extract of Gnetum Africana as a corrosion inhibitor for mild steel.  相似文献   

7.
In the present investigation, a fresh water green algae spirogyra is used as an inexpensive and efficient mild steel corrosion inhibitor. The study is carried out in 0.5?M HCl solution using weight loss measurements, scanning electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared (FT-IR) techniques. The maximum inhibition efficiency was found to be 93.03% at 2?g?L?1. The adsorption of extract of spirogyra on mild steel surface obeys the Langmuir adsorption isotherm. Corrosion inhibition mechanisms were inferred from the temperature dependence of the inhibition efficiency as well as from calculation of thermodynamic and kinetic parameters which direct the process. FT-IR analysis of green algae spirogyra revealed the presence of hydroxyl, amino, and carbonyl groups, which are responsible for the adsorption on the mild steel surface. SEM analysis supported the inhibitive action of the spirogyra extract against the mild steel corrosion in acid solution.  相似文献   

8.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

9.
Imidazopyridine derivatives, namely 4‐methoxy‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3‐yl)methylene)benzenamine (MMPIPB) and 4‐chloro‐N‐((2‐(4‐methoxyphenyl)H‐imidazo[1,2‐a]pyridin‐3yl)methylene)benzenamine (CMPIPB), were investigated as inhibitors for mild steel corrosion in 15% HCl solution using the weight loss and electrochemical techniques. According to electrochemical impedance spectroscopy studies, MMPIPB and CMPIPB show corrosion inhibition efficiency of 84.8 and 77.2% at 10‐ppm concentration and 98.1 and 94.8% at 80‐ppm concentration, respectively at 303 K. The corrosion inhibition efficiency of both inhibitors increased with increasing inhibitor concentration and decreased with increasing temperature. The adsorption of both inhibitor molecules on the surface of mild steel obeys Langmuir adsorption isotherm. Polarization studies showed that both studied inhibitors were of mixed type in nature. Electrochemical impedance spectroscopy studies showed that for both inhibitors, the value of charge transfer resistance increased and double‐layer capacitance decreased on increasing the concentration of inhibitors. Scanning electron microscopy, energy‐dispersive X‐ray spectroscopy (EDX), and atomic force microscopy were performed for surface study. The density functional theory was employed for theoretical calculations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Argan hulls extract (AHE) was tested as corrosion inhibitor for mild steel in 1?M HCl. Weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) revealed that inhibiting action increased with increasing concentration of the inhibitor. The highest efficiency 97.3% was obtained at 5?g/L AHE. There was good agreement between gravimetric and electrochemical methods (potentiodynamic polarization and EIS). Results obtained from EIS measurements were analyzed to model the corrosion-inhibition process by use of the appropriate equivalent circuit model; a constant phase element was used. Polarization measurements show also that AHE acts as good mixed inhibitor. AHE is adsorbed on the steel surface in accordance with a Langmuir isotherm adsorption model.  相似文献   

11.
The influence of the addition of poly(4-vinylpyridine-hexadecyl bromide) P4VP-Alkyl 50?% newly synthesized on the corrosion of mild steel in molar hydrochloric acid has been investigated by weight-loss measurements combined with linear potential scan voltammetry (I?CE) and electrochemical impedance spectroscopy (EIS). The polymer reduces the corrosion rate and the inhibition efficiency (E?%) of P4VP-Alkyl 50?% increases with its concentration and attains 95?% at 300?mg/L. E?% obtained from cathodic Tafel plots, EIS, and gravimetric methods were in good agreement. The inhibitor was adsorbed on the iron surface according to the Langmuir adsorption isotherm model. Polarization measurements also show that the compound acts as a cathodic inhibitor.  相似文献   

12.
本文合成了一种新型蛋氨酸衍生物酸洗缓蚀剂,运用红外光谱及核磁共振氢谱对其结构进行了鉴定。采用失重法和电化学法研究了在0. 5mol·L~(-1)硫酸介质中其对碳钢试片的缓蚀性能,并通过吸附等温模型对缓蚀机理进行初步的探讨。结果表明,蛋氨酸衍生物的缓蚀效率约为90%,整体用量适中,是一种有望得到良好应用的绿色缓蚀剂。电化学分析表明,蛋氨酸衍生物为混合型缓蚀剂,其通过增大金属表面的电荷转移电阻而降低电化学腐蚀速率。  相似文献   

13.
Abstract

The corrosion inhibition and adsorption properties of Neem (Azadirachta indica – AZI) mature leaves extract as a green inhibitor of mild steel (MS) corrosion in nitric acid (HNO3) solutions have been studied using a gravimetric technique for experiments conducted at 30 and 60°C. The results disclose that the different concentrations of the AZI extract inhibit MS corrosion and that inhibition efficiency of the extract varies with concentration and temperature. For extract concentrations studied and ranging from 9.09 to 28.57 mg/L, the maximum inhibition efficiency was 80.5 and 80.07% both at 28.57 mg/L AZI at 30 and 60°C, respectively, in 2.0 N HNO3. The adsorption of the inhibitor on the MS surface was exothermic and consistent with the physical adsorption mechanism, best described by the Frumkin adsorption isotherm.  相似文献   

14.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

15.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

16.
Abstract

The inhibitive effect of the Murraya koenigii (curry leaf) leaf extract on the corrosion of mild steel in 1 M HCl was investigated by using weight loss, open circuit potential measurements, potentiostatic polarization techniques, and impedance analysis. The results show that Murraya koenigii extract is an effective corrosion inhibitor for protecting the corrosion of mild steel in 1 M HCl medium even at stimulated conditions. The inhibition efficiency increases with increasing the concentration of the inhibitor in the medium. The percentage inhibitor efficiency under stagnant condition calculated based on weight loss method is found to be above 94.5% when the medium contains 1000 ppm of the inhibitor.  相似文献   

17.
The corrosion inhibition efficiency of 3-acetylpyridine-semicarbazide (3APSC) on carbon steel (CS) in 1.0 M HCl solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. The results show that inhibition efficiency on metal increases with the inhibitor concentration. 3APSC exhibited marked inhibition towards carbon steel in HCl medium even at low concentrations. The adsorption of inhibitor on the surfaces of the corroding metal obeys the Langmiur isotherm and thermodynamic parameters (K ads, ?G ads 0 ) were calculated. Activation parameters of the corrosion process (E a, ?H* and ?S*) were also calculated from the corrosion rates. Polarization studies revealed that 3APSC act as a mixed-type inhibitor. Surface analysis of the metal specimens was performed by scanning electron microscopy.  相似文献   

18.
The efficiency of hexa methylene diamine tetra methyl-phosphonic acid (HMDTMP), as corrosion inhibitor for carbon steel in 0.5 M HCl, has been determined by gravimetric and electrochemical measurements. Polarization curves indicate that the compound is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Adsorption of HMDTMP derivatives on the carbon steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy value confirms the chemical nature of the adsorption. EIS results show that the charge in the impedance parameters (Rt and Cdl) with concentrations of HMDTMP is indicative. The adsorption of this molecule leads to the formation of a protective layer on carbon steel surface. The electrochemical results have also been supplemented by surface morphological studies.  相似文献   

19.
The present study examines the effect of fexofenadine, an antihistamine drug, on corrosion inhibition of mild steel in molar hydrochloric acid solution using different techniques under the influence of various experimental conditions. Results revealed that fexofenadine is an effective inhibitor and percent inhibition efficiency increased with its concentration; reaching a maximum value of 97% at a concentration of 3.0 × 10−4 M. Fourier-transform infrared spectroscopy (FTIR) observations of steel surface confirmed the protective role of the studied drug. Polarization studies showed that fexofenadine is a mixed-type inhibitor. The adsorption of the inhibitor on mild steel surface obeyed the Langmuir adsorption isotherm with free energy of adsorption (∆G°ads) of −40 kJ mol−1. Energy gaps for the interactions between mild steel surface and fexofenadine molecule were found to be close to each other showing that fexofenadine has the capacity to behave as both electron donor and electron acceptor. The results obtained from the different corrosion evaluation techniques are in good agreement.  相似文献   

20.
Abstract

The inhibitive performance of methanolic extract of eco-friendly green inhibitor Spiraea cantoniensis (S. cantoniensis) on inhibiting corrosion of mild steel (MS) in 1?M HCl was studied by weight loss, AC-impedance, Fourier transform infrared spectroscopy (FT-IR), Raman, x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), atomic absorption spectroscopy (AAS), and scanning electron microscopy (SEM) analysis. The results showed that the corrosion rate significantly decreased in the presence of the S. cantoniensis inhibitor with a gradual increase in inhibition efficiency at an increased inhibitor concentration. The temperature studies were conducted which included activation energy (Ea), change in enthalpy (ΔH°ads), change in entropy (ΔS°ads), change in free energy (ΔG°ads) and heat of adsorption (Qads). These calculations were helpful to determine the reaction mechanism and proved it as a physisorption type following the Langmuir adsorption isotherm. The analysis of the protective film using FT-IR, Raman, XRD, and SEM analysis clearly showed the potentiality of S. cantoniensis in blocking the MS surface to prevent corrosion by 1?M HCl. The solution analysis via AAS and UV-Vis showed the inhibitive effect of the inhibitor (S. cantoniensis) in both inhibitive and the uninhibitive solution exhibiting the adsorption of the phytochemical molecules on the MS surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号