首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of inkjet coatings commonly contain a high concentration of fine diameter pores together with a large pore volume capacity. To clarify the interactive role of the porous structure and the coincidentally occurring swelling of binder during inkjet ink vehicle imbibition, coating structures were studied in respect to their absorption behaviour for polar and non-polar liquid. The absorption measurement was performed using compressed pigment tablets, based on a range of pigment types and surface charge polarity, containing either polyvinyl alcohol (PVOH) or styrene acrylic latex (SA) as the binder, by recording the liquid uptake with a microbalance. The results indicate that, at the beginning of liquid uptake, at times less than 2 s, the small pores play the dominant role with respect to the inkjet ink vehicle imbibition. Simultaneously, water molecules diffuse into and within the hydrophilic PVOH binder causing binder swelling, which diminishes the number of active small pores and reduces the diameter of remaining pores, thus slowing the capillary flow as a function of time. The SA latex does not absorb the vehicle, and therefore the dominating phenomenon is then capillary absorption. However, the diffusion coefficient of the water vapour across separately prepared PVOH and SA latex films seems to be quite similar. In the PVOH, the polar liquid diffuses into the polymer network, whereas in the SA latex the hydrophobic nature prevents the diffusion into the polymer matrix and there exists surface diffusion. At longer timescale, permeation flow into the porous coating dominates as the resistive term controlling the capillary driven liquid imbibition rate.  相似文献   

2.
Organic pigment particles coated with titania via sol-gel process   总被引:1,自引:0,他引:1  
This paper presented a novel method for the organic pigment coated with titania to improve the weatherability and dispersion ability in waterborne system. The organic pigment was first orderly adsorbed by two kinds of electrolyte: poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC), then coated by titania via sol-gel process from titanium n-butoxide (TBOT). The effects of the numbers of polyelectrolyte layer, water content, and TBOT content on the morphology, particle size, surface element composition, porosity and pore size, thermal stability, and UV shielding property of the organic pigment were systematically investigated. It was found that only two layers of electrolyte adsorption and one-step coating of titania could obviously enhance the UV shielding property even thermal stability of the organic pigment. The thickness of the titania layer could be easily tailored by TBOT content.  相似文献   

3.
The synthesis of (monodisperse) poly(styrene) latexes was reexamined using sodiumdodecyl sulfate as emulsifier and potassium persulfate as initiator. It has been shown, that at fixed emulsifier concentration cE the variation of persulfate amount produces similar particle size variations as changes of electrolyte (potassium sulfate) concentration at a given low initiator level. For cE << cmc a maximum of particle size versus initiator or electrolyte concentrations has been found. Concentrated monodisperse poly(styrene) dispersions and carboxylated latexes up to 50% have been prepared by a carefully controlled seeding process using monomer feed. Particle size influence on steady shear viscosity has been studied for different kinds of polymer dispersions: for electrostatic stabilized poly(styrene) latexes at high ionic strengths, for electrostatic and sterically stabilized carboxylated latexes at different pH values and for steric stabilized dispersions of poly(vinyl chloride) in plasticizer (dioctyl phthalate). All three kinds of dispersions give pronounced particle size effects on viscosity, which is different from hard-sphere-behaviour. Simple model equations have been formulated to describe the concentration and shear rate dependence on viscosity. Particle size influence may be discussed on the basis of the effective hydrodynamic particle diameter. Causes for the increase of the hydrodynamic particle size are given either by surface swelling or by the formation of particle clusters which are formed and destroyed within the shear field.  相似文献   

4.
用溶液法得到线形多嵌段聚氨酯(PU)与聚氯乙烯(PV)、氯化聚氯乙烯(CPVC)的共混物。用FTIR研究PU/PVC、PU/CPVC共混物的相容性,发现PVC、CPVC的加入破坏了PU中原来的氢键,并且PU中的炭基(C=0)与PVC、CPVC中的α-H形成了新的氢键,因而说明了PU/PVC、PU/CPVC共混物具有良好的相容性。  相似文献   

5.
In this paper, the effect of two polysaccharides (chitosan and dextran) on latex film morphology and porosity is investigated with atomic force microscopy, and the water permeability of the films is examined as well. Furthermore, latex films formed with mixtures of dextran and poly(ethylene glycol), PEG, are investigated. The results show that latex films without added polymers have the most homogeneous and dense morphology. In films containing dextran the highest degree of flocculation is observed, while these films do not show the highest water permeability. The highest permeability is observed in films containing chitosan and film porosity and permeability correlate positively to increasing chitosan concentration. The permeability of the latex films containing dextran and PEG accelerates with time. Since addition of these polymers to latex suspensions give rise to different morphologies and film permeabilities, this approach has promising abilities for control of film properties and, thus, has potential within controlled drug release.  相似文献   

6.
The nonradiative energy transfer (NRET) method has been used to study the miscibility of polymer blends in the solid state. This can be done by labeling the polymers with fluorescence donor and acceptor chromophores. The efficiency of energy transfer, which reveals the interpenetration of the chains, is measured by following changes in the fluorescence intensity ratio of the donor and acceptor as a function of the concentration of the polymer mixture and by comparison with reference values corresponding to totally miscible and totally immiscible systems. It is shown that the reference ratio corresponding to the absence of energy transfer must be determined by using donor-labeled and acceptor-labeled polymer films, instead of making measurements in chromophore solutions in organic solvents, as has usually been done. It is also shown that fluorescence quenching is important in such studies, since it can lead to variations of the fluorescence intensity ratio by more than an order of magnitude; this factor varies with blend concentration and is particularly sensitive to the presence of halogen atoms. The NRET technique has been applied to several PVC/CPVC binary blends and to PCL/PVC/CPVC ternary blends in which PVC and CPVC were labeled by naphthalene and anthracene, respectively [PCL is poly(ε-caprolactone), PVC is poly(vinyl chloride), and CPVC is chlorinated PVC]. For binary blends, the measured intensity ratios indicate the immiscibility of PVC with CPVC, although there is nonnegligible energy transfer between the two phases. For ternary blends, the intensity ratios indicate that the addition of up to 40 wt % of PCL to the immiscible PVC/CPVC binary system leads to the formation of two coexisting PCL/PVC and PCL/CPVC phases.  相似文献   

7.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

8.
Experiments carried out by Stenkamp et al. [Stenkamp, V. S.; McGuiggan, P.; Berg, J. C. Langmuir 2001, 17, 637.] have shown that polystyrene latexes can be restabilized at sufficiently high electrolyte concentrations in the presence of an amphiphilic block copolymer [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO)] At even higher electrolyte concentrations, the systems can again be destabilized. The present paper attempts to explain the restabilization through the dominance of steric interactions and the destabilization through the dominance of depletion interactions. Because of salting out, as the concentration of electrolyte increases, the polymer molecules are increasingly precipitated onto the surface of the latex particles and, at sufficiently high electrolyte concentrations, form, in addition, aggregates. The precipitation onto the latex particles generates steric repulsion, which is responsible for the restabilization, whereas the formation of aggregates generates depletion interactions, which are responsible for destabilization.  相似文献   

9.
Modern water-borne paints are applied in different areas ranging from high-gloss lacquers to flat, scrub-resistant interior paints. The pigment volume concentration (PVC) is one key-parameter adjusting the application properties. In this work formulations differing in the type of binder and dispersing agent were investigated by various techniques concerning the distribution of pigments in the liquid paints and films. The structure of the paints was analyzed by Remission Light Spectroscopy (RLS), Disc Centrifugation, Cryo-Replica Transmission Electron Microscopy (Cryo-TEM) and Cryo-Scanning Electron Microscopy (Cryo-SEM). The pigment distribution in the films was examined by means of Atomic Force Microscopy (AFM), TEM and RLS. The tendency of the pigments to form aggregates was found to depend on both: the type of binder and the dispersing agent. Only by adjusting the properties of the binder in combination with common dispersants it is possible to get well distributed TiO2 particles within the paint. Correlation of application properties e.g. gloss and blocking to the microscopic structure is presented.  相似文献   

10.
In this study, aqueous lead magnesium niobate (PMN) slurry formulations were developed for tape casting using a poly(acrylic acid) - poly(ethylene) oxide comb polymer as the dispersant, nonionic acrylic latex as the binder phase and hydroxypropyl methylcellulose as the wetting agent. Concentrated suspensions were cast onto a silicone-coated mylar film, and the effect of acrylic latex on deposition was investigated. Thermal analyses were performed to investigate the mass loss of the green tapes as a function of calcination temperature. Differential scanning calorimetric analyses were made under air and nitrogen atmospheres to investigate the binder distribution through the green tapes. Results showed that it is possible to prepare flexible, crack free PMN thick films using a proper slurry composition in the presence of acrylic latex binder, without using any plasticizer. Additionally, decomposing mechanisms of the acrylic based binder were essentially different in the two atmospheres.  相似文献   

11.
讨论了微波辐照下 ,以丙酮 水为分散介质 ,利用阳离子型自由基引发剂偶氮二异丁基脒盐酸盐(AIBA)引发苯乙烯 (St)和甲基丙烯酸甲酯 (MMA)共聚 ,合成出表面带正电荷的P(St MMA)共聚物纳米粒子 ,考察了丙酮用量、单体和引发剂浓度对纳米粒子粒径、粒径分布和乳液稳定性的影响 .结果表明 ,丙酮 水的体积比由 0增加到 1 2 6∶1时 ,粒子的平均水化半径从 12 2 2 1nm降低到 2 4 6 8nm ,粒径分布变宽 ,乳液抗电解质稳定性逐渐增强 ;增加引发剂和共聚单体MMA的浓度 ,粒子的水化半径逐渐减小 ,粒径分散系数增大 .  相似文献   

12.
The aggregation kinetics of particles in dense polystyrene latex suspensions is studied by low-coherence fiber optic dynamic light scattering. Low-coherence fiber optic dynamic light scattering is used to measure the hydrodynamic radius of the aggregates. The aggregation kinetics data obtained can be fitted into a single exponential function, which is the characteristic of slow aggregation. It is found that the aggregation rate of particles increased with higher electrolyte levels and with larger particle concentrations. The experimental results can be explained by use of the Derjaruin-Landau-Verwey-Overbeer (DLVO) theory.  相似文献   

13.
The basic features of a three-step experimental process to produce supermicron polymer particles are described. First, a submicron emulsifier-free latex is prepared by a well-known technique. Second, the latex is aggregated by destabilizing with cetyl pyridinium chloride under constant stirring conditions, to yield roughly spherical clusters of 6-12 μ diameter. Third, the aggregates are stabilized with poly(vinyl alcohol) and internally coalesced by heating at or above the glass transition temperature. The final product particles have relatively smooth surfaces. Results are qualitatively interpreted in terms of a dynamic equilibrium where the aggregate size is determined by a balance between attractive interparticle potentials and stirring shear forces. Bimodal aggregate size distributions suggest the aggregate break-up mechanism may involve the erosion of individual latex particles and small fragments from the surface of aggregates. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Heteroaggregates of cationic poly(2-vinylpyridine) microgels and anionic polystyrene latex particles have been made by mixing dilute, aqueous suspensions. The growth of the heteroaggregates was arrested by the addition of anionic silica particles that adsorbed to the free surface of the cationic microgel particles. The resulting heteroaggregates were then concentrated by vacuum filtration, freeze-dried, and characterized by mercury porosimetry and electron microscopy. The inclusion of soft, deformable microgels resulted in heteroaggregates with higher porosity than obtained with heteroaggregates of anionic and cationic latex particles. Control of the pore volumes within the freeze-dried filter cakes was demonstrated by two approaches. In the first approach, heteroaggregation at a constant KCl concentration of 0.01 mM was arrested at different times after mixing the latex and microgel particles, thereby limiting the size of the aggregates. The porosity of the resulting filter cake increased from 61 to 65 vol % as the aggregation time increased from 15 to 120 s. In the second technique, the aggregation time prior to arrest was maintained at 120 s while the KCl concentration was varied between 0.01 and 10 mM. The pore volume of the aggregates decreased from 65 to 57 vol % as the electrolyte concentration increased, a trend explained in terms of the effect of the Debye length on the aggregation process.  相似文献   

15.
A cationic and an anionic poly(N-isopropylacrylamide) (poly(NIPAM)) microgel latex were synthesized via batch radical polymerization under emulsifier-free conditions. The hydrodynamic properties, colloidal stability, and electrokinetic characteristics of these two samples were studied. The hydrodynamic particle size variation was discussed by considering the effect of salinity and temperature on the shrinkage of the thermally sensitive polymer domains. The colloidal stability also depended on temperature and electrolyte concentration. A stability diagram with two well-defined domains (stable and unstable) was obtained. The flow from one domain to the other was fully reversible due to the peculiar (de)hydration properties of the polymer. The electrokinetic behavior, which depends on electrical and frictional properties of the particles, was analyzed via electrophoretic mobility measurements. Results were discussed by considering both the particle structure dependence on temperature and salinity, and the electric double layer compression. In addition, the electrophoretic mobility data were analyzed using Ohshima's equations for particles covered by an ion-penetrable surface charged layer, as well as using another simpler equation for charges located on a hydrodynamic equivalent hard sphere. Differences between the properties of both latexes were justified by the presence of a hydrophilic comonomer, aminoethyl methacrylate hydrochloride (AEMH), in the cationic microgel.  相似文献   

16.
Asymmetric charged porous membranes were prepared by imbedding 10% (W/W) ion-exchange resin in cellulose acetate binder. Membrane potential and conductance measurements have been carried out in sodium chloride solutions at different concentrations to investigate the relationship between concentration of fixed charges and electrochemical properties of developed nonselective cation- and anion-exchange membranes. Counterion transport number and permselectivity of these membranes were found to vary due to the presence of ion-exchange resin. The hydrodynamic and electroosmotic permeability of sodium chloride solutions has been studied in order to compute equivalent pore radius. For cation- and anion-exchange membranes good agreement was observed between pore radius values estimated from hydrodynamic and electroosmotic permeability coefficient separately, while for nonselective membranes no correlation was found. Membrane conductance data, along with values of concentration of fixed charges, were used for the estimation of the tortuosity factor, salt permeability coefficient, and frictional coefficient between solute and membrane matrix employing an interpretation by nonequilibrium thermodynamic principles based on frictional forces. Moreover, surface morphological studies of these membranes also have been carried out and the membranes were found to be reasonably homogeneous.  相似文献   

17.
In this contribution, a theoretical modeling of the latex film formation is presented and compared to experimental results: water vapor permeability and latex film capacitance are studied as a function of acrylic acid content in poly(styrene-co-butyl acrylate) latex films. It has been shown that both water uptake and water vapor permeability are mainly affected by film morphology which in turn is defined by intercolloidal interaction and drying rate.  相似文献   

18.
Starch nanoparticle (SNP)‐based pressure sensitive adhesives (PSAs) with core‐shell particle morphology (starch nanoparticle core/acrylic polymer shell) are produced via seeded, semi‐batch emulsion polymerization at 15 wt% SNP loading (relative to total polymer weight) and 40 wt% latex solids. Crosslinker and chain transfer agent (CTA) are introduced to the acrylic shell polymer formulation at a range of concentrations according to a 32 factorial design to tailor the latex and adhesive properties of SNP‐based latexes. The crosslinker and CTA show no significant effect on polymerization kinetics, particle size, and viscosity. Latex gel content is predicted using an empirical model, which is a function of crosslinker and CTA concentration. Both the gel content and glass transition temperature strongly affect the adhesive properties (tack, peel strength, and shear strength) of the SNP‐based latex films. 3D response surfaces for the adhesive properties are constructed to facilitate the design of SNP‐based PSAs with desired properties.  相似文献   

19.
Aqueous solutions of the surface active poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymers (poloxamers) were studied using photon correlation spectroscopy (quasi-elastic light scattering) and viscosity measurements. Poloxamers 184 and 237 showed detectable aggregates at 25° only at concentrations above about 6% with size increasing with concentration and with significant polydispersity, probably indicating a multiple association process. At 35°, however, essentially invariant values for the hydrodynamic radius were found over a wide concentration range and the systems were essentially monodisperse: these systems are more likely to be represented by a closed association model. The more hydrophilic poloxamer 188, however, retained its concentration dependence of aggregate size up to 55°. The variation with temperature of both the hydrodynamic radius of aggregates and the intrinsic viscosity of several poloxamers was rationalized by relating the temperature-dependency curves to the cloud point of the poloxamer. In some cases only certain sections of the curve are observable when the cloud point is high, e.g., >100°, or low, e.g., <40°.  相似文献   

20.
Novel fluorescent poly(2-(acetoacetoxy)ethyl methacrylate)(PAAEMA) latexes have been synthesized by miniemulsion polymerization employing a polymeric costabilizer. Nanoscale aggregates of macromolecules bearing β-dicarbonyl are formed in the prepared latex particles. Ammonia and the β-dicarbonyl aggregates assemble a supramolecular complex, which exhibits strong visible fluorescence under UV light. The formation of the complex is confirmed by the characteristic absorption peak located at about 275 nm in UV-Vis spectra. The absorption spectrum has been found to be applicable for ammonia detection. Atomic Force Microscopy (AFM) studies of surface morphology reveal that gas-sensing properties of the PAAEMA thin films involve the reversible absorption and desorption of ammonia. PAAEMA thin films are sensitive to ammonia gas and have a short response time of 80s when exposed to 54 ppm of ammonia gas concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号