首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The mechanochemical solid-state adsorption of the cationic dye crystal violet (CV) by montmorillonite was investigated by XRD and simultaneous DTA-TG. Solid CV was ground with the clay for 5 min and four different varieties of CV mechanochemically treated clay were investigated. X-ray and DTA data were compared with those of CV-montmorillonite obtained from an aqueous suspension. X-ray and DTA studies of a ground mixture and a ground mixture heated at 110°C suggest that the mechanochemical adsorption of organic cations takes place on the external surfaces of the clay. The study of a ground mixture washed with water, and washed with water and acetone reveal that water is essential for the penetration of CV into the interlayer space.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
The mechanochemical adsorption of phenol by laponite, saponite, montmorillonite, beidellite and vermiculite was studied by IR and X-ray spectroscopy. Mixtures containing phenol and clay in the ratio of 6:10 were manually ground by a mortar and pestle for 1,3,5 and 10 min and the ground mixtures were investigated. Depending on the basicity of the clay mineral and the time of grinding, two different associations between interlay er cations, water and phenol were identified. In these associations phenol can act either as a proton acceptor or donor (Configurations I and II, respectively). The phenol is more acidic than water and in most cases phenol acts as a proton donor. With montmorillonite and beidellite phenol acts as a proton acceptor. In this association the aromatic ring forms π bonds with atoms of the oxygen planes of the tetrahedral sheets which donate electrons to the anti-bonding π orbitals of the phenol.  相似文献   

3.
To develop the solid-state laser oscillator based on laser dye compounds, the incorporation of rhodamine 6G (R6G, a laser dye) in cetyltrimethylammonium (CTA+) cationic surfactant/montmorillonite clay hybrid (HpC) thin solid films was investigated. The R6G/HpC samples were prepared by immersing the HpC films into a R6G aqueous solution with various concentration. X-ray diffraction patterns of the films of HpC, measured before and after the intercalation of R6G, proved the coexistence of both the dye and surfactant in clay interlayer spaces. All prepared thin films exhibited luminescence. It indicates that CTA+ molecules play a role as a partial suppressor of the aggregation of R6G molecules which prevents fluorescence. Moreover, the luminescence property of the present thin films was observed to be dependent on the co-intercalated degree of R6G molecules, indicating that the R6G intercalating in HpC interlayer space molecules exist as two or more luminescence species in the clay interlayer space.  相似文献   

4.
The adsorption of the monovalent anionic dye alizarinate onto Na- and Al-montmorillonite was carried out by adding the dye into aqueous clay suspensions. Electronic spectra of aqueous suspensions and of air-dried dye-clay complexes were studied. Na-montmorillonite adsorbed only part of the added dye. With total amount of alizarinate up to 5 mmol dye per 100 g clay the adsorption of the dye takes place on the broken bonds, leading to peptization of the clay. Al-montmorillonite adsorbed alizarinate completely up to 10 mmol per 100 g clay. Above this loading there was a partition of the dye between the clay and the supernatant. The maximum adsorption for Na- and Al-clay was 4 and 25 mmol dye per 100 g clay, respectively. Absorption bands in the spectrum of Al-montmorillonite suspensions (488-504 nm) appear at longer wavelengths than in the spectrum of air-dried Al-montmorillonite (415-455 nm). Thermo-X-ray study of these clay-alizarinate complexes suggests that the organic compound was located in the interlayer space in Al-montmorillonite but was not located there in Na-montmorillonite. In Al-montmorillonite alizarinate formed a coordination complex with exchangeable Al(3+). In Na-montmorillonite it formed bonds with Al exposed on the broken-bonds sites.  相似文献   

5.
Montmorillonite was thermally treated at several temperatures to reduce the charge density of its layer surface. Absorption and fluorescence (steady-state and time-resolved) spectroscopies are now applied to study the adsorption of rhodamine 3B (R3B) laser dye in reduced charge montmorillonites (RCMs) in aqueous suspensions. The decrease in the charge density increases the intermolecular distance between adsorbed R3B molecules, reducing the tendency of the dye to self-associate. H-type and J-type aggregates of R3B in RCMs are spectroscopically characterized, the fluorescent J-aggregates being more extensively formed by decreasing the charge density. Both the reduction in the dye aggregation and the formation of J-type aggregates enhance the fluorescence efficiency of R3B dye adsorbed in montmorillonite particles. Absorption with linearly polarized light reveals that the H-aggregates are more disposed toward the perpendicular of the clay surface than the monomer and J-aggregates species.  相似文献   

6.
The morphology of thin films of Laponite (Lap) clay elaborated by the evaporation method and spin-coating technique was analyzed by atomic force microscopy and scanning electron microscopy, indicating a better quality film for the latter procedure. Rhodamine 6G (R6G) laser dye was intercalated into these films by ion exchange mechanism, performed by immersing the clay film into adequate dye solutions in which the effect of the dye concentration, immersion time, and nature of the solvent on the adsorption process were checked. The adsorption of R6G at the interlayer space of Lap was analyzed by the X-ray diffraction technique, and the presence of several R6G species (monomers and aggregates) was characterized by absorption and fluorescence spectroscopies. Less viscous solvents lead to higher dye loadings, suggesting a diffusional process for the intercalation of the dye in the interlayer spaces of Lap, and polar solvents favor the swellability of the interlayer space giving rise to a more homogeneous distribution of R6G molecules through the film and decreasing the dye aggregation. With the aging of the samples, the dye molecules can migrate through the interlayer spaces, leading to a more expanded distribution of R6G molecules and to the dye deaggregation.  相似文献   

7.
邓琳  祁志美 《物理化学学报》2010,26(7):1923-1928
利用六甲基二硅烷胺对平面玻璃光波导(高折射率透明导光薄膜介质)进行硅烷化处理, 得到水接触角大于90°的疏水表面. 然后使用时间分辨光波导分光光谱技术研究水溶液中的罗丹明6G (R6G)和亚甲基蓝(MB)分子在疏水玻璃表面的吸附行为, 并与亲水玻璃条件下测得的结果进行对比. 对利用疏水玻璃光波导测得的R6G的吸附-脱附动力学曲线进行Langmuir拟合得到了R6G的吸附速率常数, 脱附速率常数以及吸附自由能. 并且发现与亲水玻璃情况相比, 吸附速率常数增大, 脱附速率常数减小, 吸附自由能更负. 在疏水玻璃表面形成的R6G和MB吸附层的吸光度与亲水玻璃情况相比显著升高, 表明这两种分子更倾向于吸附在疏水玻璃表面. 实验结果还发现玻璃硅烷化处理能够有效抑制这两种染料分子在表面的聚合反应.  相似文献   

8.
The absorption and fluorescence properties of rhodamine 6G (R6G) in organophilic laponite (Lap) clay films are studied. For this purpose, organo-Lap clays are synthesized by the incorporation of dodecyltrimethylammonium (C12TMA) as surfactant into the interlayer space of Lap clays. Two organo-Lap clays are prepared: one with moderate surfactant content (around 70% of the total cation-exchange capacity (CEC) of the clay) and a second with a high surfactant loading (about 130% CEC). Supported films are elaborated by the spin-coating technique and characterized by several techniques such as atomic force microscopy, elemental CHN analysis, X-ray diffraction, and thermogravimetry. IR spectroscopy reveals that the intercalation of R6G into organo-Lap films takes place at the detriment of the adsorbed C12TMA molecules. The photophysical properties of R6G monomers in the interlayer space of Lap films are improved by the presence of surfactant molecules. Moreover, organophilic environments can reduce the dye aggregation and favor the formation of fluorescent J-type aggregates, enhancing the fluorescence ability of dye/clay films with high dye contents. This improvement depends on the surfactant content.  相似文献   

9.
It is shown how stable, nonaqueous suspensions of fully exfoliated smectite clays such as Laponite and montmorillonite can be obtained. Suspensions in toluene and in a branched aliphatic solvent (polydecene) were characterized using elemental analysis, rheometry, and small-angle X-ray scattering. For Laponite, stable suspensions were obtained by adsorbing a dichain poly(isobutylene) based stabilizer to the particles. This approach did not result in full exfoliation for montmorillonite particles, possibly because the stabilizer was able to connect individual clay sheets at the edges during the treatment process. Instead, a quaternary ammonium surfactant, dimethyl dioctadecylammonium bromide (DODAB), was first adsorbed to the clay. Subsequently, adsorption of the poly(isobutylene) based stabilizer to this pretreated clay resulted in fully exfoliated suspensions of montmorillonite. Suspensions of clay particles treated only with DODAB have been studied by several authors before and are included in this study for comparison. A detailed discussion of the suspension behavior of the different clay samples is given. The suspension routes presented here may enable further studies of the structure and flow behavior of suspensions of thin, flexible clay platelets as a function of aspect ratio.  相似文献   

10.
A comparison is made of the mechanochemical activation of three low- and one high-defect kaolinite using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. The effect of mechanochemical alteration of the kaolinites is greater for the low-defect kaolinites. The effectiveness of the mechanochemical treatment is represented by the slope of the d(001) peakwidth-grinding time line. High-defect kaolinite is not significantly altered by the grinding treatment. The effect of mechanochemical treatment on peakwidth was independent of the presence of quartz; the quartz acts as an additional grinding medium. The effectiveness of the mechanochemical treatment depends on the crystallinity of the kaolinite. Two processes are identified in the mechanochemical activation of the kaolinite: first the delamination of kaolinite appears to take place in the first hour of grinding and second a recombination process results in the reaggregation of the ground crystals. During this process proton hopping occurs and reaction to form water takes place. This water is then adsorbed and coordinated to surface-active sites created during mechanochemical treatment.  相似文献   

11.
Four aluminosilicate sorbents (montmorillonite, bentonite, raw perlite, and expanded perlite) were employed for retention of the cationic dye C.I. Basic Blue 41. Interactions between the clay and the dyestuff were investigated at several temperatures and clay:dye ratios. The mechanism behind the adsorption involves the formation of H-aggregates of the dye on both clays, followed by dye migration into the interlayer in the case of montmorillonite. Time-dependent absorbance spectra revealed the presence of various dye species in montmorillonite. Introduction of the dye molecules into the interlamellar space occurs more rapidly in bentonite than in montmorillonite. The dye molecules inserted between the clay leaves adopt different orientations and, eventually, stack in layers at increased dye loadings for both montmorillonite and bentonite. Higher dye aggregates are then present as suggested by diffuse reflectance spectroscopy. Dye sorption on both raw and expanded perlite proceeds via H-aggregate formation as well.  相似文献   

12.
Structural changes in Ca and octadecyltrimethylammonium (ODTMA) montmorillonite induced by dry grinding in a high-energy planetary ball mill were investigated by X-ray powder diffraction (XRD) analysis, infrared (IR) spectroscopy, and scanning electron microscopy (SEM). The organomontmorillonite is more resistant toward mechanical destruction than the Ca form. Both XRD and IR analyses indicate a complete breakdown of the mineral layers after 5 min of grinding of Ca-JP. The XRD pattern of the ODTMA clay shows disappearance of the layer ordering along the c axis after 40 min of grinding, while persistence of the layered structure for all tested samples is proven by the IR spectroscopy. The grinding process affects chemical bonds in the OH, SiOAl, and SiOSi groups of montmorillonite; however, no changes are observed for CH bonds of the organocations. In contrast to the Ca form, all absorption bands typical for montmorillonite appear in the IR spectrum of the ODTMA montmorillonite even after 40 min of grinding. The majority of the bands are undetectable in the spectrum of Ca montmorillonite ground for 5 min. Amorphization of the montmorillonite caused by an intense grinding process is markedly slower after replacing the inorganic cations with the long-chain alkylammonium cations.  相似文献   

13.
Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.  相似文献   

14.
Adsorption of polyetheramines on montmorillonite at high pH   总被引:1,自引:0,他引:1  
Adsorption of a series of polyetheramines on montmorillonite in aqueous suspension was investigated by a range of methods: elemental analysis, atomic absorption spectroscopy, measurement of pH, conductivity and electrophoretic mobility, and small-angle X-ray scattering. Adsorption proceeds through an ion exchange mechanism. The maximum surface coverage attained is equivalent to about 40% of the cationic exchange capacity of the clay. Adsorption of the poly(oxypropylene) block adjacent to the amine group onto the clay surface may contribute to this. Surprisingly the adsorption takes place at pH conditions well above the pK(a) of the amine surfactants, where they are not protonated in the bulk solution. The surface coverage as a function of molar mass broadly agrees with predictions assuming adsorbed polymers adopt a densely packed mushroom configuration at the clay surface.  相似文献   

15.
The adsorption of the monovalent anionic dye alizarinate onto Co-, Ni- and Cu-montmorillonite was carried out by adding the dye into aqueous clay suspensions. During the loading of the clay suspension by alizarinate, only some of the added organic anion is adsorbed by the clay forming d-coordination chelate complexes on the clay surface. Maximum adsorption of Co-, Ni- and Cu-clay were 13, 13 and 25 mmol dye per 100 g clay. Since the capacity of the clay for these transition metal cations is 38 mmol per 100 g clay, these saturations indicate that only part of the transition metal cations form positively charged d-coordination chelate complexes with metal:ligand ratio of 1. The complex cations can be located inside the interlayer spaces or on the broken bonds surfaces. Thermo-XRD-analysis and peptization studies of the solids and the clay water systems respectively were used here to identify the sorption sites. The Co and Ni complexes were obtained on the broken bonds surfaces whereas the Cu complexes were obtained in the interlayer space. Co2+, Ni2+ and Cu2+ were extracted from the clay into suspensions containing excess alizarinate.  相似文献   

16.
In order to elaborate organized two-dimensional arrangements of fluorescent dyes in host solid layered materials, rhodamine 6G (R6G) is encapsulated in supported thin films of laponite (Lap) clay. Clay films are elaborated by the spin-coating technique and their surface morphology is analyzed by scanning electron (SEM) and atomic force (AFM) microscopies. The internal order of the stacked clay layers is checked by X-ray diffraction technique (DRX). The thermostability of R6G in the Lap films is discussed on the basis of several thermogravimetric and calorimetric techniques (TG, DTA and DSC). The R6G adsorbed species in Lap films are characterized by absorption and fluorescence (steady-state and time-resolved) spectroscopies. Monomers, dimers and higher-order aggregates are identified for very low (<0.1%), moderate (1–25%) and high (>40% of the total cation exchange capacity, CEC, of the clay) dye content, respectively. Both non-fluorescence H-type and fluorescent J-type aggregates of R6G in Lap films are characterized.Absorption and fluorescence techniques with linearly polarized light are applied to evaluate the anisotropic photoresponse of R6G in Lap films, from which the preferential orientation of dye molecules with respect to the clay layers can be evaluated. The validity of the newly established fluorescence polarization is contrasted with the well-established absorption polarization method, and the emission spectroscopy with linearly polarized light can be applied to establish the preferential orientation of fluorophore molecular probes incorporated in any rigid and ordered 2D host materials, including monolayers and biological membranes.  相似文献   

17.
The sorption of nitrobenzene andn-pentanol from dilute aqueous solution on swelling clay minerals and their organophilized derivatives (organo clays) was studied. Adsorption excess isotherms were obtained by the immersion method. The basal spacings of the clay minerals were determined by X-ray diffraction measurements. By combining these two independent methods, composition and structure of the interlamellar space could be calculated. On the hydrophilic surface of montmorillonite negative adsorption of the organic component was observed at low molar fractions of nitrobenzene or pentanol, i.e., water was preferentially adsorbed. On organophilized montmorillonite and vermiculite adsorption of nitrobenzene and pentanol was positive over the whole range of liquid composition. The amount of interlamellar alkyl chains which is determined by the surface charge of clay mineral inversely affected the adsorption of both solutes.  相似文献   

18.
In the present investigation, DTA and TG techniques were used to study the thermal behaviour of montmorillonite treated with solutions of the pesticide aminotriazole (AMT), in nitrogen flow. These techniques have been complemented by mass spectrometry of the evolved gases (EGA-MS). AMT is adsorbed in the interlamellar space of montmorillonite as a cation. Results obtained in this study show that this provokes a shift of the dehydroxylation peak of montmorillonite to lower temperatures than those of the untreated clay. Montmorillonite protects the adsorbedAMT, delaying its first decomposition step, and catalysesAMT final decomposition at lower temperatures. The DTA curve of montmorillonite-AMT mechanical mixture differs from the sum of those of the clay mineral and the pesticide heated individually. Montmorillonite dehydroxylation occurs at lower temperature, indicating a complex formation betweenAMT and the mineral during the heating process. However the DTA of the mixture is different from that of the complex previously studied, indicating that in the complex obtained by heating the physical mixtureAMT is adsorbed as neutral molecule or as a product of its decomposition.  相似文献   

19.
Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.  相似文献   

20.
Summary: Non‐ionic pyrrole was directly intercalated into unmodified montmorillonite (MMT) and organically modified MMT galleries by adsorption, and subsequently polymerized within the interlamellar spaces by a mechanochemical route under solvent‐free conditions. XRD analysis revealed the successful intercalation of pyrrole into unmodified MMT and organically modified MMT clay galleries by mechanochemical grinding. After in situ polymerization, the XRD and FT‐IR analyses confirmed the insertion of polypyrrole chains between both MMT galleries.

X‐ray powder diffraction patterns of (A) pyrrole‐intercalated MMT and (B) pyrrole‐intercalated C18‐MMT.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号