首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McKee ML 《Inorganic chemistry》2002,41(5):1299-1305
The 12(12) closomers form a rapidly expanding class of compounds where a 12-vertex cage is surrounded by 12 identical substituents. Density functional theory (B3LYP/6-31G(d)) is used to study a number of these closomers in different states of oxidation (dianion, radical anion, and neutral cages). The cage stability increases as the group electronegativity of the substituent increases. Also, the 12(12) closomer becomes easier to oxidize as the Hammett sigma(p) parameter becomes more negative (electron-donating). As the closomer is oxidized, the size of the cage increases and the B-B distances become more asymmetric. The Raman-active breathing mode in the 404-434 cm(-1) range moves to lower frequency as the cage is oxidized, which is caused by removing one or two electrons from a cage-bonding molecular orbital.  相似文献   

2.
One of the most applied reaction types to synthesize shape-persistent organic cage compounds is the imine condensation reaction and it is assumed that the formed cages are thermodynamically controlled products due to the reversibility of the imine condensation. However, most of the synthesized imine cages reported are formed as precipitate from the reaction mixture and therefore rather may be kinetically controlled products. There are even examples in literature, where resulting cages are not soluble at all in common organic solvents to characterize or study their formation by NMR spectroscopy in solution. Here, a triptycene triamine containing three solubilizing n-hexyloxy chains has been used to synthesize soluble congeners of prior insoluble cages. This allowed us to study the formation as well as the reversibility of cage formation in solution by investigating exchange of building blocks between the cages and deuterated derivatives thereof.  相似文献   

3.
The model proposed earlier for molecular mechanics calculations of 7- and 12-vertex boranes, carboranes, and metallocarboranes has been extended to the case of 10-vertex borane cage compounds. To use the MM3 program with the standard connectivity file, and to avoid program alterations, the 10-vertex cages of the molecules were presented as a superposition of four formally independent fragments. Interactions between the fragments were described with a Hill-like potential, with the parameters adjusted for valence interactions. Standard values for the bond lengths and bond angles in the 10-vertex boron cage have been found by statistical analysis of X-ray data on borane cage compounds stored in the Cambridge Structural Database. Several substituted neutral molecules and anions have been considered, and good agreement of the calculated and experimental data has been obtained. Using the approach developed, the unknown structure of the [mu-B20H16O(CH2)4O(CH2)2CH(CH3)2]3- ion has been calculated.  相似文献   

4.
Host–guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using 19F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4L6 2 , Fe8L12 3 , and Fe4L4 4 , each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest.  相似文献   

5.
汪文龙  李存耀  张恒  张江威  卢兰露  姜政  崔立峰  刘宏光  严丽  丁云杰 《催化学报》2021,42(7):1216-1226,中插76-中插81
多孔有机笼(POCs)由英国利物浦大学的Cooper教授在2009年首次合成,这种多孔小分子材料的出现具有两方面重要意义:(1)开拓了多孔材料领域的一个全新分支,改变了人们对多孔材料的传统认知;(2)由于POCs材料由离散的小分子堆积而成,可溶解于一些常用的有机溶剂中,因此其在材料制备方面具有很好的"溶液成型"性能,该优势是三维延伸网状多孔材料所不具备的.POCs本质上是一种"中心带孔"的有机小分子,由刚性有机分子砌块收敛堆叠而成,其特殊结构在气体吸附与分离等方面表现出很好的应用前景.不同于传统空间延伸网状框架材料(如金属-有机框架材料和共价有机框架材料)及多孔有机聚合物(POPs)材料,POCs是一种在大多数有机溶剂中可溶解的小分子材料,因此在均相催化领域也有很好的应用前景.作为最为经典的有机配体,三苯基膦(PPh3)在金属有机化学和均相催化领域应用十分广泛,如目前均相催化工业应用最成功的典范之一氢甲酰化反应,大多数情况下使用的是PPh3与Rh形成的络合物催化剂.本文首先将PPh3进行醛基官能团化,通过醛基和氨基的收敛缩合形成POCs材料,合成了基于PPh3配体的准多孔有机笼(POC-DICP),利用得到的多孔有机笼制备出类Rh/PPh3均相催化体系的Rh/POC-DICP络合催化体系,并将其应用于氢甲酰化反应.相比于经典的Rh/PPh3均相催化体系,该Rh/POC-DICP催化体系在氢甲酰化反应中不仅展示出了更高的活性和目标产物醛的选择性(醛的化学选择性为97%,醛的正异构比为1.89),而且可以很方便地从均相反应体系中沉淀回收(通过调整溶剂体系极性).在氢甲酰化反应中,Rh/POC-DICP体系显示出了良好的底物适用性,在己烯、庚烯、辛烯和苯乙烯的氢甲酰化反应中均表现出良好的催化活性和醛选择性,同时催化剂回收使用4次,未见催化性能明显下降.X射线单晶衍射、同步辐射及DFT计算等结果表明,Rh/POC-DICP催化体系在氢甲酰化反应中具有较高活性和选择性的原因是POC-DICP多孔有机笼分子的有利的空间咬合角(123.88o)和P原子上相对的缺电子效应.本文设计合成的PPh3衍生的多孔有机笼不仅拓宽了多孔有机笼材料在催化领域的应用,而且为新型配体及络合催化剂的设计、合成及修饰提供了新的思路.  相似文献   

6.
汪文龙  李存耀  张恒  张江威  卢兰露  姜政  崔立峰  刘宏光  严丽  丁云杰 《催化学报》2021,42(7):1216-1226,中插76-中插81
多孔有机笼(POCs)由英国利物浦大学的Cooper教授在2009年首次合成,这种多孔小分子材料的出现具有两方面重要意义:(1)开拓了多孔材料领域的一个全新分支,改变了人们对多孔材料的传统认知;(2)由于POCs材料由离散的小分子堆积而成,可溶解于一些常用的有机溶剂中,因此其在材料制备方面具有很好的"溶液成型"性能,该优势是三维延伸网状多孔材料所不具备的.POCs本质上是一种"中心带孔"的有机小分子,由刚性有机分子砌块收敛堆叠而成,其特殊结构在气体吸附与分离等方面表现出很好的应用前景.不同于传统空间延伸网状框架材料(如金属-有机框架材料和共价有机框架材料)及多孔有机聚合物(POPs)材料,POCs是一种在大多数有机溶剂中可溶解的小分子材料,因此在均相催化领域也有很好的应用前景.作为最为经典的有机配体,三苯基膦(PPh3)在金属有机化学和均相催化领域应用十分广泛,如目前均相催化工业应用最成功的典范之一氢甲酰化反应,大多数情况下使用的是PPh3与Rh形成的络合物催化剂.本文首先将PPh3进行醛基官能团化,通过醛基和氨基的收敛缩合形成POCs材料,合成了基于PPh3配体的准多孔有机笼(POC-DICP),利用得到的多孔有机笼制备出类Rh/PPh3均相催化体系的Rh/POC-DICP络合催化体系,并将其应用于氢甲酰化反应.相比于经典的Rh/PPh3均相催化体系,该Rh/POC-DICP催化体系在氢甲酰化反应中不仅展示出了更高的活性和目标产物醛的选择性(醛的化学选择性为97%,醛的正异构比为1.89),而且可以很方便地从均相反应体系中沉淀回收(通过调整溶剂体系极性).在氢甲酰化反应中,Rh/POC-DICP体系显示出了良好的底物适用性,在己烯、庚烯、辛烯和苯乙烯的氢甲酰化反应中均表现出良好的催化活性和醛选择性,同时催化剂回收使用4次,未见催化性能明显下降.X射线单晶衍射、同步辐射及DFT计算等结果表明,Rh/POC-DICP催化体系在氢甲酰化反应中具有较高活性和选择性的原因是POC-DICP多孔有机笼分子的有利的空间咬合角(123.88o)和P原子上相对的缺电子效应.本文设计合成的PPh3衍生的多孔有机笼不仅拓宽了多孔有机笼材料在催化领域的应用,而且为新型配体及络合催化剂的设计、合成及修饰提供了新的思路.  相似文献   

7.
十二顶点邻位双取代碳硼烷衍生物二阶NLO性质的理论研究   总被引:2,自引:2,他引:0  
采用密度泛函理论(DFT) B3LYP/6-31G*方法, 对系列十二顶点邻位双取代碳硼烷(C2B10H12)衍生物的几何构型进行优化. 在所得优化结构的基础上, 结合有限场方法(FF)和含时密度泛函理论(TD-DFT)对这些分子的二阶非线性光学(NLO)活性及电子吸收光谱进行了研究. 结果表明, 邻位双取代碳硼烷有较强的吸电子作用, 与有机基团形成D-π-A结构时, 可以起到很好的受体作用. 当给体部分或桥的共轭性好, 给体的给电子能力强时, 邻位双取代碳硼烷的吸电子作用更明显, 从而增强了分子的二阶NLO响应.  相似文献   

8.
By synthesizing derivatives of a trans‐1,2‐diaminocyclohexane precursor, three new functionalized porous organic cages were prepared with different chemical functionalities on the cage periphery. The introduction of twelve methyl groups ( CC16 ) resulted in frustration of the cage packing mode, which more than doubled the surface area compared to the parent cage, CC3 . The analogous installation of twelve hydroxyl groups provided an imine cage ( CC17 ) that combines permanent porosity with the potential for post‐synthetic modification of the cage exterior. Finally, the incorporation of bulky dihydroethanoanthracene groups was found to direct self‐assembly towards the formation of a larger [8+12] cage, rather than the expected [4+6], cage molecule ( CC18 ). However, CC18 was found to be non‐porous, most likely due to cage collapse upon desolvation.  相似文献   

9.
Capture and sequestration of green house gas CO(2) is a major challenge for scientists and identifying right materials for this purpose is a task of outstanding importance. Through reliable computational studies, we have demonstrated that the clathrate cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) have a great potential to store CO(2). All the considered clathrates and their CO(2) inclusion complexes are optimized at B3LYP/6-31G(d) level of theory. The impact of DFT-D, M05-2X, and MP2 functionals on interaction energy were tested using various basis sets. Although different functionals and basis sets show variation in absolute IE values, the trend is consistent and does not depend on the level of the calculations. Dispersion was found important for these complexes and DFT-D shows comparable IE values with MP2 functional. The optimum and maximum cage occupancy for all the considered cages were tested on the basis of quantum chemical calculations. The maximum cage occupancy for all five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, two, two, two, and seven CO(2) molecules, respectively, and the optimum cage occupancy is one, one, one, two, and five CO(2) molecules, respectively. Thus, 5(12)6(8) cages can host up to 7 CO(2) molecules, resulting in about 32 wt %, which makes them highly promising materials.  相似文献   

10.
A range of fluoride-encapsulated octasilsesquioxane cage compounds have been prepared using the TBAF route. Our studies suggest that whilst it is relatively straightforward to prepare fluoride-encapsulated octasilsesquioxane cage compounds with adjacent sp(2) carbons, leading to a range of aryl and vinyl substituted compounds, the corresponding sp(3) carbon derivatives are more capricious, requiring an electron withdrawing group that can stabilize the cage whilst not acting as a leaving group. Analysis by X-ray crystallography and solution (19)F/(29)Si NMR spectroscopy of R(8)T(8)@F(-) reveal very similar environments for the encapsulated fluoride octasilsesquioxane cages. Migration of a fluoride ion from inside the cage to outside the cage without breaking the T(8) framework and the possibility of encapsulating other anions within silsesquioxane cages have been also investigated.  相似文献   

11.
Novel profluorescent mono‐ and bis‐isoindoline nitroxides linked to napthalimide and perylene diimide structural cores are described. These nitroxide‐fluorophore probes display strongly suppressed fluorescence in comparison to their corresponding non‐radical diamagnetic methoxyamine derivatives. The perylene‐based probe possessing two isoindoline systems tethered through ethynyl linkages was shown to be the most photostable in solution, demonstrating significantly enhanced longevity over the 9,10‐bis(phenylethynyl)anthracene fluorophore used in previous profluorescent nitroxide probes.  相似文献   

12.
The sI methane clathrate hydrate consists of methane gas molecules encapsulated as dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of the stability of these cages is crucial to an understanding of the mechanism of their formation. In the present work, we perform calculations using density functional theory to calculate interaction energies, free energies, and reactivity indices of these cages. The contributions from polarization functions to interaction energies is more than diffuse functions from Pople basis sets, though both functions from the correlation-consistent basis sets contribute significantly to interaction energies. The interaction energies and free energies show that the formation of the 5(12)CH(4) cage (from the 5(12) cage) is more favored compared to the 5(12)6(2)CH(4) cage (from the 5(12)6(2) cage). The pressure-dependent study shows a spontaneous formation of the 5(12)CH(4) cage at 273 K (P ≥ 77 bar) and the 5(12)6(2)CH(4) cage (P = 100 bar). The reactivity of the 5(12)CH(4) cage is similar to that of the 5(12) cage, but the 5(12)6(2)CH(4) cage is more reactive than the 5(12)6(2) cage.  相似文献   

13.
Porous liquids are a type of porous materials that engineer permanent porosity into unique flowing liquids, exhibiting promising functionalities for a variety of applications. Here a Type I porous liquid is synthesized by transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Simple physical mixing of 18‐crown‐6 with task‐specific anionic porous organic cages affords a porous ionic liquid with anionic porous organic cages as the anionic parts and 18‐crown‐6/potassium ion complexes as the cationic parts. In contrast, mixing of 15‐crown‐5 and anionic porous organic cages in a 2:1 ratio gives only solids, while the addition of excess 15‐crown‐5 affords a Type II porous liquid. The permanent porosity in the cage‐based porous liquids has been also confirmed by molecular simulation, positron (e+) annihilation lifetime spectroscopy, and enhanced gas sorption capacity compared with pure crown ethers.  相似文献   

14.
Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.  相似文献   

15.
Reactions of a tripodal ligand, N,N',N″-tris(3-pyridinyl)phosphoric triamide (TPPA), and a series of transition-metal ions result in the assembly of five discrete M(6)L(8) coordination cages [M(6)(TPPA)(8)(H(2)O)(12)](ClO(4))(12)·57H(2)O [M = Ni(2+) (1), Co(2+) (2), Zn(2+) (3), Cd(2+) (4)] and [Pd(6)(TPPA)(8)]Cl(12)·22H(2)O (5). X-ray structural analyses reveal that the cages have large internal cavities and flexible windows. The flexible ligand TPPA adopts the syn conformation in cages 1-4, but it transforms to the anti conformation in cage 5. Because of the conformational transformation, the sizes of the windows and the volume of the internal cavity of cage 5 are increased. (1)H NMR and electrospray mass spectrometric studies show that cage 5 maintains its structural integrity in solution. Additionally, compounds 3 and 4 exhibit strong blue fluorescent emissions, which are 1 order of magnitude higher than that of the free ligand.  相似文献   

16.
Two oxovanadium phosphonate cage compounds have been synthesized in an organic solvent, and their characterization has been done by single-crystal X-ray analysis, IR spectroscopy, and bond valence sum calculations. The simple reaction of a mixed-valent closed V12 cage system produced another quasi-closed system composed of two V6 bowl-type cages.  相似文献   

17.
Porous materials with well‐defined pore structures have received considerable attention in the past decades due to their unique structures and wide applications. Most porous materials such as zeolites, metal‐organic frameworks, covalent organic frameworks, and porous organic polymers are extended to infinite frameworks or networks by robust covalent or coordination bonds. Porous molecular cages composed of discrete molecules with permanent cavities are an emerging class of porous material and the discrete molecules assemble into solids by weak intermolecular interaction. In comparison to porous extended solids such as metal‐organic frameworks and covalent organic frameworks, porous molecular cage solids are generally soluble in organic solvents thus allowing solution processing, making them more convenient to apply in many fields. This review mainly focuses on the recent advances of application of porous molecular cages (porous organic cages and metal‐organic cages) for enantioselective recognition and separation from 2010 to present, including gas chromatography, capillary electrochromatography, chiral fluorescent recognition, chiral potentiometric sensing, and enantioselective adsorption. Furthermore, the two important family members of porous molecular cages, porous organic cages and metal‐organic cages, are also discussed.  相似文献   

18.
We report, for the first time, a calculation of the isotropic NMR chemical shift of 129Xe in the cages of clathrate hydrates Structures I and II. We generate a shielding surface for Xe in the clathrate cages by quantum mechanical calculations. Subsequently this shielding surface is employed in canonical Monte Carlo simulations to find the average isotropic Xe shielding values in the various cages. For the two types of cages in clathrate hydrate Structure I, we find the intermolecular shielding values [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-214.0 ppm, and [sigma(Xe@5(12)6(2) cage)-sigma(Xe atom)]=-146.9 ppm, in reasonable agreement with the values -242 and -152 ppm, respectively, observed experimentally by Ripmeester and co-workers between 263 and 293 K. For the 5(12) and 5(12)6(4) cages of Structure II we find [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-206.7 ppm, and [sigma(Xe@5(12)6(4) cage)-sigma(Xe atom)]=-104.7 ppm, also in reasonable agreement with the values -225 and -80 ppm, respectively, measured in a Xe-propane type II mixed clathrate hydrate at 77 and 220-240 K by Ripmeester et al.  相似文献   

19.
Sonogashira cross‐coupling of bromophenylethenyl‐terminated cubic, double four‐ring, siloxane cages with di‐/triethynyl compounds results in microporous poly(ethynylene aryleneethenylene silsesquioxane) networks, simply termed as polyorganosiloxane networks (PSNs). In comparison with porous organic polymers reported previously, these PSNs show relatively high surface area and comparable thermal stability. Their apparent BET specific surface areas vary in the range of 850–1040 m2 g?1 depending on the length and the connectable sites of the ethynyl compounds. Analyses of pore size distribution revealed bimodal micropores with relatively narrow distribution. The degree of cross‐linking affects the degree of cleavage of the siloxane bonds, and this suggests that partial cleavage of the siloxane cages is mainly a result of cage distortion. Hydrogen adsorption was performed to evaluate potential of the PSNs as hydrogen storage media. Uptakes of up to 1.19 wt % at 77 K and 760 Torr and initial isosteric heats of adsorption as high as 8.0 kJ mol?1 were observed. These materials have been obtained by a combination of structural, synthetic organic, and materials chemistry, which can exploited to synthesize porous hybrid materials with specifically designed structures and functions.  相似文献   

20.
Reaction of cobalt salts with phosphonic acids in the presence of 6-chloro-2-hydroxypyridine as a co-ligand, normally in its deprotonated form, leads to a series of new polymetallic cobalt cages. The most common structural type is a {Co(14)} cage which resembles a fragment of cobalt hydroxide. Variation of the phosphonate present and the cobalt salt leads to {Co(6)}, {Co(8)}, {Co(10)}, {Co(11)}, {Co(12)}, {Co(13)}, and {Co(20)} cages, all of which have been characterized by X-ray crystallography. Magnetic studies of these cages show a general decline in the product chi(m)T with T, but for {Co(6)}, {Co(8)}, and {Co(12)} there are maxima at low temperature, which suggests nondiamagnetic ground states. Investigation of the dynamic behavior of the magnetization of these complexes shows that the octanuclear cage displays slow relaxation of magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号