首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We explore here the feasibility of employing molecular iodine as Lewis acid catalyst for Diels–Alder (DA) reaction using conceptual density functional theory (DFT) based reactivity indices and transition state analysis at the DFT (B3LYP)/6-31G(d) level of theory. Catalytic effect of iodine is probed using reactivity indices considering six different substituents for the diene at the 2-position and five different substituents at the 1-position of the olefinic dienophile. Comparison of HOMO diene–LUMO dienophile gap between the catalyzed and uncatalyzed processes confirms catalytic effect of iodine in DA reaction. Mechanistic details of both the uncatalyzed and the iodine catalyzed processes is achieved through transition state analysis for four possible stereoisomeric reactive channels with respect to isoprene–acrolein model reaction. A significant cutback in activation barrier is observed in presence of iodine. Influence of iodine on regioselectivity of the reaction and asynchronicity of bond formation is analyzed using local version of the HSAB principle and philicity index.  相似文献   

2.
Trimethylallylsilane has been shown to add to methyl acrylate in good yield when catalyzed by TiCl(4) at room-temperature despite literature reporting to the contrary. Further, even with these small alkyl ligands on the metal, ring annulation occurs to a large extent, in addition to simple allylation (Sakurai addition). The kinetic product is the ((trimethylsilyl)methyl)cyclobutane derivative which can be isomerized to cyclopentanoid, the thermodynamic product, if left in the presence of the catalyst. Consistent with other literature in this area, increasing the size of the ligands on silicon increases both the rate of product formation and the proportion of ring annulation relative to allylation. To develop a predictive model for allylsilane reactivity, ab initio gas-phase calculations have been made on the parent allylsilane with different ligands on the metal and on the reaction between these allylsilanes and acrolein, acrylic acid, and methyl acrylate. Predictions indicate that as the length of n-alkyl ligands on silicon increase, so does the apparent ability of the Si-Calpha bond of the allylsilane to hyperconjugate with developing vacant p orbital on Cbeta as the allylsilane begins to attack an electrophile. This is corroborated by a gradually increasing HOMO in the ground-state allylsilane as the ligands are changed from methyl through to n-hexyl and an increasing Si-Calpha bond length and decreasing Si-Calpha-Cbeta bond angle in the protonated species. These results in the gas phase mirror the reactivity of these n-alkyl-substituted allylsilanes in experiment; i.e., as the length of the alkyl chain increases, reactivity increases significantly. Triisopropylallylsilane, a very reactive silane, appears to anomalous in charge distribution and geometrical features compared with other substituted allylsilane systems which is due, presumably, to steric effects. The calculations on the protonated species would indicate that almost no hyperconjugative stabilization can occur on the basis of the bond lengths and angles necessary to promote good orbital overlap between the Si-Calpha bond and the empty p orbital on Cbeta. However, the gas-phase reaction of the triisopropylallylsilane with acrolein and methyl acrylate led to comparatively low energy barriers of 13.1 and 24.5, respectively, which is consistent with its high experimental reactivity. Together, this computational analysis has produced a useful model for predicting allylsilane reactivity and some possible explanations for this reactivity.  相似文献   

3.
The catalytic effect of various weakly interacting Lewis acids (LAs) across the periodic table, based on hydrogen (Group 1), pnictogen (Group 15), chalcogen (Group 16), and halogen (Group 17) bonds, on the Diels-Alder cycloaddition reaction between 1,3-butadiene and methyl acrylate was studied quantum chemically by using relativistic density functional theory. Weakly interacting LAs accelerate the Diels-Alder reaction by lowering the reaction barrier up to 3 kcal mol−1 compared to the uncatalyzed reaction. The reaction barriers systematically increase from halogen<hydrogen<chalcogen<pnictogen-bonded LAs, i. e., the latter have the least catalytic effect. Our detailed activation strain and Kohn-Sham molecular orbital analyses reveal that these LAs lower the Diels-Alder reaction barrier by increasing the asynchronicity of the reaction to relieve the otherwise destabilizing Pauli repulsion between the closed-shell filled π-orbitals of diene and dienophile. Notably, the reactivity can be further enhanced on going from a Period 3 to a Period 5 LA, as these species amplify the asynchronicity of the Diels-Alder reaction due to a stronger binding to the dienophile. These findings again demonstrate the generality of the Pauli repulsion-lowering catalysis concept.  相似文献   

4.
The catalytic effect of ionization on the Diels-Alder reaction between 1,3-butadiene and acrylaldehyde has been studied using relativistic density functional theory (DFT). Removal of an electron from the dienophile, acrylaldehyde, significantly accelerates the Diels-Alder reaction and shifts the reaction mechanism from concerted asynchronous for the neutral Diels-Alder reaction to stepwise for the radical-cation Diels-Alder reaction. Our detailed activation strain and Kohn-Sham molecular orbital analyses reveal how ionization of the dienophile enhances the Diels-Alder reactivity via two mechanisms: (i) by amplifying the asymmetry in the dienophile's occupied π-orbitals to such an extent that the reaction goes from concerted asynchronous to stepwise and thus with substantially less steric (Pauli) repulsion per reaction step; (ii) by enhancing the stabilizing orbital interactions that result from the ability of the singly occupied molecular orbital of the radical-cation dienophile to engage in an additional three-electron bonding interaction with the highest occupied molecular orbital of the diene.  相似文献   

5.
The Diels-Alder reaction between cyclopentadiene and three dienophiles (acrolein, methyl acrylate and acrylonitrile) having different hydrogen bond acceptor abilities has been carried out in several ionic liquids and molecular solvents in order to obtain information about the factors affecting reactivity and selectivity. The solvent effects on these reactions are examined using multiparameter linear solvation energy relationships. The collected data provide evidence that the solvent effects are a function of both the solvent and the solute. For a solvent effect to be seen, the solute must have a complimentary character; selectivities and rates are determined by the solvent hydrogen bond donation ability (alpha) in the reactions of acrolein and methyl acrylate, but not of acrylonitrile.  相似文献   

6.
双螺旋金属(Ⅱ)卟啉的结构、电子光谱及其反应活性   总被引:1,自引:0,他引:1  
  相似文献   

7.
在密度泛函理论框架下,采用嵌入点电荷簇模型研究了NO在MgO(001)完整和缺陷表面上的吸附。研究结果表明:具有氧缺陷结构表面的催化活性较高,有利于NO键的削弱;当另一个NO分子进攻已吸附的NO分子时,NO键将进一步削弱,直致断裂,并伴有N2O产生,这与UPS和MIES实验观察到的现象一致。Mulliken布居分析指出,底物电子向NO转移,并填充到NO的*反键轨道上,从而导致NO键的削弱,并形成NO-。这也是可能导致形成NO-的原因。研究还表明,具有镁缺陷的MgO(001)表面对NO的解离没有催化活性。  相似文献   

8.
磷酸酯类反应性物质是乙酰胆碱酯酶不可逆抑制剂。本文应用概念密度泛函理论(CDFT),采用四组条件(B3LYP/6-311++G(2d, 3p)/gas,B3LYP/6-311++G(2d, 3p)/CPCM/water,MP2/6-311++G(2d, 3p)/gas,MP2/6-311++ G(2d, 3p)/CPCM/water),对20多个磷酸酯反应性物质进行反应性描述指数计算,包括分子的化学势μ,绝对硬度η、亲电性指数ω、分子的前线轨道能量等分子整体描述参数,以及原子福井函数、自然键轨道(NBO)电荷、Wiberg键级、NBO键级等分子局域描述参数。通过对反应性描述指数以及定量构性关系(QSPR)方程预测结果的比较分析,得出结论:大多数化合物亲电进攻的反应中心发生在磷原子上;磷酸酯类化合物侧链乙胺基叔氮的质子化,将显著增强反应中心磷原子的亲电进攻能力;B3LYP/6-311++G(2d, 3p)/gas为最合理的计算条件;应用反应性描述指数建立的QSPR模型明显优于常规的2D-QSPR模型,能够用于乙酰胆碱酯酶不可逆抑制剂的精确毒性预测。  相似文献   

9.
Corrosion inhibition of copper through six bipyrazolic compounds has been elucidated by means of density functional theory (DFT)-derived reactivity indexes. The DFT calculated parameters and experimental corrosion inhibition efficiency (IE%) indicate that their inhibition effect is closely related to the frontier orbital energies, polarizability, electronic chemical potential and global nucleophilicity. The quantum chemistry calculations were performed at the B3LYP/6-31G (d) level. The theoretical results, predicted using DFT-based reactivity indexes, are in good agreement with experimental outcomes.  相似文献   

10.
Carboxylic acid dimers and their monosulfur derivatives are investigated by density functional theory calculations. Basis set superposition error (BSSE) counterpoise correction is included to compare the influence of BSSE on the interaction energies as well as on the geometries. The nature of hydrogen bond is determined on the basis of atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Good correlations have been established between H‐bond length versus AIM topological parameter, orbital interaction, and barrier height for proton transfer. The reactivity behavior along the reaction path of the double proton transfer reaction has also been studied. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
Porphyrin and pincer complexes are both important categories of compounds in biological and catalytic systems. The idea to combine them is computationally investigated in this work. By employment of density functional theory (DFT), conceptual DFT, and time-dependent DFT approaches, structure, spectroscopy, and reactivity properties of porphyrin pincers are systematically studied for a selection of divalent metal ions. We found that the porphyrin pincers are structurally and spectroscopically different from their precursors and are more reactive in electrophilic and nucleophilic reactions. A few quantitative linear/exponential relationships have been discovered between bonding interactions, charge distributions, and DFT chemical reactivity indices. These results are implicative in chemical modification of hemoproteins and understanding chemical reactivity in heme-containing and other biologically important complexes and cofactors.  相似文献   

12.
The selectivity and rate enhancement of bifunctional hydrogen bond donor-catalyzed Diels–Alder reactions between cyclopentadiene and acrolein were quantum chemically studied using density functional theory in combination with coupled-cluster theory. (Thio)ureas render the studied Diels–Alder cycloaddition reactions exo selective and induce a significant acceleration of this process by lowering the reaction barrier by up to 7 kcal mol−1. Our activation strain and Kohn–Sham molecular orbital analyses uncover that these organocatalysts enhance the Diels–Alder reactivity by reducing the Pauli repulsion between the closed-shell filled π-orbitals of the diene and dienophile, by polarizing the π-orbitals away from the reactive center and not by making the orbital interactions between the reactants stronger. In addition, we establish that the unprecedented exo selectivity of the hydrogen bond donor-catalyzed Diels–Alder reactions is directly related to the larger degree of asynchronicity along this reaction pathway, which is manifested in a relief of destabilizing activation strain and Pauli repulsion.  相似文献   

13.
Transition metal phosphoraniminato derivatives of Keggin-type polyoxometalates(POMs) are important intermediates in N-transfer reactions.Density functional theory(DFT) has been employed to calculate the electronic structures,bonding features and redox properties of the iron and ruthenium phosphoraniminato derivatives of Keggin-type POMs,[PW11O39{MVNPPh3}] 3-(M = Fe,Ru).Our DFT calculations show that both anions have the same qualitative M-N single bond features.However,the calculations predict that the FeN system possesses a lower energy and more accessible metalnitrogen antibonding orbital than the RuN system.This results in a greater weakening of the Fe-N bond in the reduction process,and thus enhances its N-transfer reactivity.  相似文献   

14.
Electron delocalization between the reagent and reactant molecules is the principal driving force of chemical reactions. It brings about the formation of new bonds and the cleavage of old bonds. By taking the aromatic substitution reaction as an example, we have shown the orbitals participating in electron delocalization. The interacting orbitals obtained are localized around the reaction sites, showing the chemical bonds that should be generated and broken transiently along the reaction path. By projecting a reference orbital function that has been chosen to specify the bond being formed on to the MOs of the reactant molecules, the reactive orbitals that are very similar to the interacting orbital have been obtained. The local potential of the reaction site for electron donation estimated for substituted benzene molecules by using these projected orbitals shows a fair correlation with the experimental scale of the electron-donating and -withdrawing strength of substituent groups. The reactivity is shown to be governed by local electronegativity and local chemical hardness and also by the localizability of interaction on the reaction site. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The double bond migration of butene catalyzed by 1-ethyl-3-methyl-imidazolium fluoride (EmimF) has been studied using quantum chemical method. The geometries of reactant, transition state and product for the isomerization have been optimized by density functional theory (DFT) at the B3PW91/6-31G(d,p), 6-311++G(d,p) and aug-cc-PVDZ levels. The computed results show that the 4-H atom on imidazole ring of EmimF has a good catalytic activity to the double bond migration of butene and the catalytic reaction of 1-butene to 2-butene is a synergetic and elementary process. The apparent activation energy of isomerization is about 197 kJ/mol.  相似文献   

16.
Density functional theory (DFT) calculations are used to study the strength of the CH…O H‐bond in the proton transfer reaction of glycine. Comparison has been made between four proton transfer reactions (ZW1, ZW2, ZW3, SCRFZW) in glycine. The structural parameters of the zwitterionic, transition, and neutral states of glycine are strongly perturbed when the proton transfer takes place. It has been found that the interaction of water molecule at the side chain of glycine is high in the transition state, whereas it is low in the zwitterionic and neutral states. This strongest multiple hydrogen bond interaction in the transition state reduces the barrier for the proton transfer reaction. The natural bond orbital analysis have also been carried out for the ZW2 reaction path, it has been concluded that the amount of charge transfer between the neighboring atoms will decide the strength of H‐bond. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

17.
The present research employs density functional theory(DFT) computations to analyze the structure and energy of complexes formed by psoralen drug with alkali(Li+, Na+, K+) and alkaline earth(Be2+, Mg2+, Ca2+) metal cations. The computations are conducted on M06-2X/aug-cc-pVTZ level of theory in the gas phase and solution. The Atoms in Molecules(AIM) and natural bond orbital(NBO) analyses are applied to evaluating the characterization of bonds and the atomic charge distribution, respectively. The results show that the absolute values of binding energies decrease with going from the gas phase to the solution. Furthermore, the considered complexes in the water(as a polar solvent) are more stable than the CCl4(as a non-polar solvent). The DFT based chemical reactivity indices, such as molecular orbital energies, chemical potential, hardness and softness are also investigated. The outcomes show that the considered complexes have high chemical stability and low reactivity from the gas phase to the solution. Finally, charge density distributions and chemical reactive sites of a typical complex explored in this study are obtained by molecular electrostatic potential surface.  相似文献   

18.
Nucleophilic substitution reaction between some substituted benzyl chlorides and chloride ion has been investigated by ab initio and DFT methods. New calculated energy data are in better agreement with experimental data. The electron‐withdrawing groups increase the energy barriers and the electron‐donating groups decrease them. The changes of geometrical parameters and energy data are in good agreement with the results of atoms in molecules and natural bond orbital analyses. The relationship between Hammett coefficients and energy data (and geometry parameters) has been established and the ρ constant has been calculated for this reaction. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Hydrophosphination is an atomically efficient method for introducing new carbon‐phosphorous bonds in organic synthesis. New late‐transition metal catalytic complexes are proposed to facilitate this process. These nickel‐based complexes are analyzed using semiempirical (SE), Hartree–Fock (H–F), and density functional theory (DFT) models. H–F proves to be ineffective, while the SE approach has limited, qualitative use. DFT shows electron density at the metal center suitable for catalyzing bond formation in the proposed, reductive hydrophosphination mechanism. It also shows that the pincer complexes under investigation are relatively insensitive to solvent dielectric constant and to the chemical character of the monodentate ligand, both in terms of electron distribution and in terms of molecular orbital energies. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
To explore the details of the reaction mechanism of Ti atom with HCN, the reactive site and reactivity have been predicted first, the potential energy surfaces have been systematically studied at different theoretical levels. Four different reaction pathways and product distribution are discussed by means of the activation strain model and Curtin–Hammett principle. In addition, the structures, bonding properties and the frontier molecular orbital interaction diagrams of main stationary points were analyzed by atoms in molecules and natural bond orbital. The results show that for this system, there are four reaction pathways, in which path b (HCN+Ti→IM1→TS1→IM2→T2b→IM4) is the most favorable pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号