首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new flexible exo-bidentate ligands were designed and synthesized, incorporating different backbone chain lengths bearing two salicylamide arms, namely 2,2'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))bis(N-benzylbenzamide) (L(I)) and 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(oxy)bis(N-benzylbenzamide) (L(II)). These two structurally related ligands are used as building blocks for constructing diverse lanthanide polymers with luminescent properties. Among two series of lanthanide nitrate complexes which have been characterized by elemental analysis, TGA analysis, X-ray powder diffraction, and IR spectroscopy, ten new coordination polymers have been determined using X-ray diffraction analysis. All the coordination polymers exhibit the same metal-to-ligand molar ratio of 2?:?3. L(I), as a bridging ligand, reacts with lanthanide nitrates forming two different types of 2D coordination complexes: herringbone framework {[Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)](∞) (Ln = La (1), and Pr (2), m = 1, 2)} as type I,; and honeycomb framework {[Ln(2)(NO(3))(6)(L(I))(3)·nCH(3)OH](∞) (Ln = Nd (3), Eu (4), Tb (5), and Er (6), n = 0 or 3)} as type II, which change according to the decrease in radius of the lanthanide. For L(II), two distinct structure types of 1D ladder-like coordination complexes were formed with decreasing lanthanide radii: [Ln(2)(NO(3))(6)(L(II))(3)·2C(4)H(8)O(2)](∞) (Ln = La (7), Pr (8), Nd (9)) as type III, [Ln(2)(NO(3))(6)(L(I))(3)·mC(4)H(8)O(2)·nCH(3)OH](∞) (Ln = Eu (10), Tb (11), and Er (12), m, n = 2 or 0) as type IV. The progressive structural variation from the 2D supramolecular framework to 1D ladder-like frameworks is attributed to the varying chain length of the backbone group in the flexible ligands. The photophysical properties of trivalent Sm, Eu, Tb, and Dy complexes at room temperature were also investigated in detail.  相似文献   

2.
Eight new lanthanide metal complexes [LnL(NO(3))(2)]NO(3) {Ln(III) = Nd, Dy, Sm, Pr, Gd, Tb, La and Er, L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand} were prepared. These complexes were characterized by elemental analysis, thermogravimetric analysis (TGA), molar conductivity measurements and spectral studies ((1)H NMR, FT-IR, UV-vis, and luminescence). The Schiff base ligand coordinates to Ln(III) ion in a tetra-dentate manner through the phenolic oxygen and azomethine nitrogen atoms. The coordination number of eight is achieved by involving two bi-dentate nitrate groups in the coordination sphere. Sm, Tb and Dy complexes exhibit the characteristic luminescence emissions of the central metal ions attributed to efficient energy transfer from the ligand to the metal center. Most of the complexes exhibit antibacterial activity against a number of pathogenic bacteria.  相似文献   

3.
Xia J  Zhao B  Wang HS  Shi W  Ma Y  Song HB  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(9):3450-3458
3,5-pyrazoledicarboxylic acid (H3L) reacts with nitrate salts of lanthanide(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) under hydrothermal conditions to form a series of lanthanide polymers 1-9. These nine polymers have the same crystal system of monoclinic, but they exhibit three different kinds of metal-organic framework structures. The complexes {[Ln2(HL)3(H2O)4].2H2O}n (Ln=Pr (1), Nd (2), and Sm (3)) were isostructural and exhibited porous 3D frameworks with a Cc space group. The complexes {[Ln2(HL)3(H2O)3].3H2O}n (Ln=Eu (4), Gd (5), and Tb (6)) were isostructural and built 2D double-decker (2DD) frameworks with a P21/c space group. The complexes {[Ln(HL)(H2L)(H2O)2]}n ((Ln=Dy (7), Ho (8), and Er (9)) were also isostructural and formed 2D monolayer (2DM) frameworks with a P21/n space group. The structure variation from the 3D porous framework to the 2D double-decker to the 2D monolayer is attributed to the lanthanide contraction effect. Notably, six new coordination modes of 3,5-pyrazoledicarboxylic acid were observed, which proved that 3,5-pyrazoledicarboxylic acid may be used as an effective bridging ligand to assemble lanthanide-based coordination polymers. The photophysical and magnetic properties have also been investigated.  相似文献   

4.
Nine novel heterometallic coordination polymers [Ln(2)Ni(Hbidc)(2)(SO(4))(2)(H(2)O)(8)](n) (Ln = Pr (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Yb (9), H(3)bidc = 1H-benzimidazole-5,6-dicarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, FT-IR, TG analysis and single crystal X-ray diffraction. X-ray analysis revealed that all complexes present almost identical three-dimensional (3D) structures with PtS-type topology. Complexes 1-7 are all isomorphous, and the structure variation of polymers 8 and 9 is induced by the lanthanide contraction effect. In additional, the luminescence properties of complexes 2, 3 and 5-7, and the magnetic properties of complexes 4 and 6-8 were investigated.  相似文献   

5.
合成了13种1,5-双(1′-苯基-3′-甲基-5′-吡唑啉酮-4′)-戊二酮-[1,5](BPMPPD)和溴化十六烷基吡啶盐(CPB)的稀土配合物.研究了配合物的红外光谱、紫外可见光谱、差热-热重谱、荧光光谱、核磁共振谱及摩尔电导等性质,发现配合物属离子型缔合物CP+[Ln(BPMPPD)2]-.Pr、Nd、Ho、Er、Tm配合物发生超灵敏跃迁.配合物的热分解温度具有"四分组"效应,Sm、Eu、Tb、Oy为线性荧光。  相似文献   

6.
研究了N,N-二乙基二硫代甲酸根(dtc)作配体的双核配位化合物[Mo(dtc)4][Ln(dtc)4](Ln=La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho和Er)的氧化还原性质及其在电极过程中的电化学特性.  相似文献   

7.
The possibility of obtaining volatile polynuclear heterometallic complexes containing lanthanides and transition metals bound by methoxy-β-diketonates was studied. New compounds were prepared by cocrystallization of monometallic complexes from organic solvents. Ln(tmhd)3 were used as initial monometallic complexes (Ln = La, Pr, Sm, Gd, Tb, Dy, Lu; tmhd = 2,2,6,6-tetramethylheptane-3,5-dionate) in combination with TML2 in various ratios (TM = Cu, Co, Ni, Mn; L: L1 = 1,1,1-trifluoro-5,5-dimethoxypentane-2,4-dionate, L2 = 1,1,1-trifluoro-5,5-dimethoxy-hexane-2,4-dionate, L3 = 1,1,1-trifluoro-5-methoxy-5-methylhexane-2,4-dionate). Heterometallic complexes of the composition [(LnL2tmhd)2TM(tmhd)2] were isolated for light lanthanides Ln= La, Pr, Sm, Gd, and L= L1 or L2. By single crystal XRD, it has been established that heterometallic compounds containing La, Pr, Cu, Co, and Ni are isostructural linear coordination polymers of alternating mononuclear transition metal complexes and binuclear heteroleptic lanthanide complexes, connected by donor–acceptor interactions between oxygen atoms of the methoxy groups and transition metal atoms. A comparison of powder XRD patterns has shown that all heterometallic complexes obtained are isostructural. Havier lanthanides Ln = Tb, Dy, Lu did not form heterometallics. Instead, homometallic complexes Ln(L3)3 were identified for Ln = Dy, Lu as well as for Ln = La. The thermal properties of the complexes were investigated by TG-DTA and vacuum sublimation tests. The heterometallic complexes were found to be not volatile and decomposed under heating to produce inorganic composites of TM oxides and Ln fluorides. In contrast, Ln(L3)3 is volatile and may be sublimed in a vacuum. Results of magnetic measurements are discussed for several heterometallic and homometallic complexes.  相似文献   

8.
The reaction of LH3 with Ni(ClO4)(2).6H 2O and lanthanide salts in a 2:2:1 ratio in the presence of triethylamine leads to the formation of the trinuclear complexes [L2Ni2Ln][ClO4] (Ln=La (2), Ce (3), Pr (4), Nd (5), Sm (6), Eu (7), Gd (8), Tb (9), Dy (10), Ho (11) and Er (12) and L: (S)P[N(Me)NCH-C6H3-2-O-3-OMe]3). The cationic portion of these complexes consists of three metal ions that are arranged in a linear manner. The two terminal nickel(II) ions are coordinated by imino and phenolate oxygen atoms (3N, 3O), whereas the central lanthanide ion is bound to the phenolate and methoxy oxygen atoms (12O). The Ni-Ni separations in these complexes range from 6.84 to 6.48 A. The Ni-Ni, Ni-Ln and Ln-O phenolate bond distances in 2-12 show a gradual reduction proceeding from 2 to 12 in accordance with lanthanide contraction. Whereas all of the compounds (2-12) are paramagnetic systems, 8 displays a remarkable ST=(11)/2 ground state induced by an intramolecular Ni. . .Gd ferromagnetic interaction, and 10 is a new mixed metal 3d/4f single-molecule magnet generated by the high-spin ground state of the complex and the magnetic anisotropy brought by the dysprosium(III) metal ion.  相似文献   

9.
本文报道了希土与3-乙酰乙酰基-4-羟基香豆素(H2aac)配合物的合成.其化学组成为Ln(Haac)3·nH2O(Ln为La、Pr、Nd、Eu、Gd.Dy、Er,n为1或2).基于H-NMR、IR的结果,提出了希土离子与配位体4位羟基氧与邻近羰基双齿配位结构.对Nd(3+)及Er(3+)配合物的超灵敏吸收带的形状和吸收强度等也作了讨论.  相似文献   

10.
The thermal decomposition of lanthanide complexes, with a general formula: [LnL(NO3)2](NO3), where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Er; and L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand, was studied by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques. The TG and DTG data indicated that all complexes are thermostable up to 398 K. The thermal decomposition of all Ln(III) complexes was a two-stage process and the final residues were Ln2O3 (Ln = La, Nd, Sm, Gd, Dy, Er), Tb4O7, and Pr6 O11. The activation energies of thermal decomposition of the complexes were calculated from analysis of the TG-DTG curves using the Kissinger, Friedman, and Flynn-Well-Ozawa methods.  相似文献   

11.
余玉叶 《化学研究》2006,17(1):16-19
合成了双水杨醛缩1,10-癸二胺Sch iff碱配体(C24H32N2O2,以L表示)与稀土Ln3+的15种新的固体配合物[LnL(NO3)3].nH2O(Ln=La,Ce,Pr,Nd,Sm,Eu,n=0;Ln=Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,n=1).利用元素分析、摩尔电导、红外光谱、热分析等方法进行表征.中心金属离子Ln3+与Sch iff碱配体中的酚羟基氧以及硝酸根中的氧发生配位,配位数为8.  相似文献   

12.
Two types of isostructural complexes of lanthanide chlorides with diglyme have been synthesized. These are mononuclear molecular complexes [LnCl3(diglyme)(THF)] (Ln = Eu ( 1 ), Gd ( 2 ), Dy ( 3 ), Er ( 4 ), Yb ( 5 ); diglyme = diethylen glycol dimethyl ether) and binuclear molecular complexes [LnCl3(diglyme)]2 (Ln = Dy ( 3d ), Er ( 4d ), Yb ( 5d )). Complex 1 was obtained by the reaction of [EuCl3(DME)2] with diglyme in THF. The complexes 2 – 5 and 3d – 5d resulted from reactions of LnCl3·6H2O, (CH3)3SiCl and diglyme in THF. The mononuclear complexes 2 – 5 crystallized directly from the solutions where the reactions of lanthanide compounds with diglyme took place. Recrystallizations of the powder products of the same reactions from dichloromethane resulted in the binuclear complexes 3d – 5d . Reactions of lanthanide bromide hydrates, (CH3)3SiBr and diglyme in THF achieved mononuclear molecular complexes [LnBr3(diglyme)(L)] (Ln = Gd, L = H2O ( 6 ); Ln = Ho, L = THF ( 7 )). Crystals of 6 and 7 were grown by recrystallization from dichloromethane. The lanthanide atoms (Ln = Eu–Yb) are seven‐coordinated in a distorted pentagonal bipyramidal fashion in all reported complexes, 1 – 7 and 3d – 5d . Four oxygen atoms and three halide ions are coordinated to lanthanide atoms in 1 – 7 , [LnX3(diglyme)(L)]. Four chloride ions, two bridging and two nonbridging, and three oxygen atoms are coordinated to lanthanide atoms in 3d – 5d , [LnCl3(diglyme)]2.  相似文献   

13.
Lanthanide coordination polymers with the formula [Ln(pydc)2]·H2O (Ln = La, 1 ; Nd, 2 ; pydc = 3,4‐pyridinedicarboxylate) and [Ln(pydc)(ina)(H2O)2] (Ln = Sm, 3 ; Eu, 4 ; Tb, 5 ; Dy, 6 ; pydc = 3,4‐pyridinedicarboxylate, ina = isonicotinate) were synthesized by treating LnIII nitrates with 3,4‐pyridinedicarboxylic acid under hydrothermal conditions. Single‐crystal and powder X‐ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. The lighter lanthanide compounds 1 and 2 consist of extended two‐dimensional layer structures with the thickness of ca. 1.7 nm. While the heavier lanthanide compounds 3 ‐ 6 have pydc‐bridged double chain structures with one chelating carboxylate group of ina ligand and two water molecules on each metal center. Interestingly, decarboxylation occurred and pydc was partially transformed into ina in the hydrothermal reactions of 3 ‐ 6 . The fluorescence activities of compounds 4 and 5 are reported.  相似文献   

14.
A sulfonate-carboxylate ligand, 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid (H(4)-DSNDA), and eight new lanthanide coordination polymers {[Pr(4)(OH)(4)(DSNDA)(2)(H(2)O)(12)](H(2)O)(10)}(n) (1), [Ln(H(2)-DSNDA)(0.5)(DSNDA)(0.5)(H(2)O)(5)](n) (Ln = La(2), Nd(3), Sm(4), Eu(5), Gd(6), and Dy(7)), and {[Er(H-DSNDA)(H(2)O)(4)](H(2)O)}(n) (8) have been synthesized. Detailed crystal structures of these compounds have been investigated. Compound 1 has a 3D framework featuring the unique cubane-shaped [Pr(4)(μ(3)-OH)(4)] clusters and is a binodal 4,8-connected network with (4(16)·6(12))(4(4)·6(2))(2) topology. Compounds 2-7 are isostructural and have 2D layered structures. Compound 8 is also a 2D layer but belongs to different structural types. The luminescence behavior of compound Eu(5) shows that the π-rich aromatic organic ligands efficiently transfer the absorbed light energy to the Eu(III) ions, thus enhancing the overall luminescent properties of compound Eu(5). The magnetic properties of all compounds except for the diamagnetic La(2) compound have been investigated. In addition, elemental analysis, IR spectra, and thermogravimetric analysis of these compounds are also described.  相似文献   

15.
The characteristics of styrene-acrylic acid copolymer supported lanthanide complexes (SAAC Ln) (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tin, Yb, and Lu) were described. A comparison of the activities of SAAC·Ln was made. It was found that in the polymerization of butadiene, a peak in activity appeared at Nd and Pr, Sin, Eu and the heavy lanthanides exhibited low or no activities. The effects of some factors on the activities were discussed. The microstructure of the polymers obtained with all the lanthanides in the series were the same and the content of cis-1, 4 polybutadiene attained was more than 98%.  相似文献   

16.
Zhang X  Wang D  Dou J  Yan S  Yao X  Jiang J 《Inorganic chemistry》2006,45(26):10629-10635
A series of 10 novel polyoxometalate (W/Mo) compounds connected via a trivalent lanthanide cation bridge, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}.n(H2O) (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu; M = W or W/Mo) (1-10), were designed and synthesized on the basis of the abduction of Al3+ in aqueous solution. X-ray diffraction analyses reveal that the structures of complexes 1-10 are three-dimensional frameworks assembled from the arrangement of H2M12O42(10-) (named paradodecmetalate-B) and Ln(H2O)53+ with two planes, which are constructed via the unification of H2M12O42(10-) and Ln(H2O)53+, along the [100] and [001] directions. Magnetic measurements reveal the paramagnetic properties and a strong ferromagnetic coupling between the two nearest-neighboring lanthanide cations, Ln3+ (Ln = Dy, Er), within the circle for compounds 2 and 4-9.  相似文献   

17.
稀土组氨酸配合物的合成和性质研究   总被引:1,自引:0,他引:1  
本文合成了十二个稀土与L-组氨酸(L-His)的固体配合物,元素分析结果表明配合物的组成为Ln(His)3(NO3)32H2O(Ln=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Er,Tm)。并通过配合物的IR、UV、H-NMR、TG-DTA、磁化率及在水中的摩尔电导等的研究,表征了这些配合物的物理化学性质,结果表明稀土组氨配合物中配体通过羟基氧原子与镧系离子配位。  相似文献   

18.
Six novel 3D layer-pillared lanthanide-transition metal coordination polymers,LnCuX(IN)2(Ac)(H2O)(Ln = Tb,X = Br(1);Ln = Er,X = Cl(2)),[LnCuCl(IN)2(Ac)].H2O(Ln = Gd(3);Ln = Eu(4)),and [LnCu2Br2(IN)2(Ac)(H2O)].nH2O(Ln = Dy,n =0(5);Ln = Gd,n = 0.5(6))(IN = isonicotinate,Ac = acetate),have been obtained by linking Ln-organic layers and diverse Cu-complex pillars under hydrothermal conditions.1 and 2 are isostructural and formed by 2D Ln-IN-Ac layers and CuX(IN)2 pillars(X = Br(1),X= Cl(2));3 and 4 are isomorph...  相似文献   

19.
The new solid complexes [LnL2(NO3)2]NO3 (L=C18H23NO2, N-2-hydroxy-3-methoxy-benzaldehyde-1-aminoadamanantane, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) of rare earth nitrates with Schiff base derived from o-vanillin and adamantaneamine have been synthesized in non-aqueous system and characterized by elemental analysis, molar conductance, infrared spectra, 1H NMR spectra, thermal analysis. The coordination modes of the bonding in these complexes were discussed and the possible structure were proposed. Every central Ln(Ⅲ) ion in the complexes coordinates with both two Schiff base ligands via four oxygen atoms of the phenol hydroxy groups and methoxy groups and two nitrates via their four oxygen atoms. Their coordination numbers are eight. In addition, the antibacterial activity of the Schiff base ligand and the complexes were studied.  相似文献   

20.
Fourteen three-dimensional coordination polymers of general formula [Ln(lNO)(H2O)(SO4)]n, where Ln = La, 1.La; Ce, 2.Ce; Pr, 3.Pr; Nd, 4.Nd; Sm, 5.Sm; Eu, 6.Eu; Gd, 7.Gd; Tb, 8.Tb; Dy, 9.Dy; Ho, 10.Ho; Er. 11.Er; Tm, 12.Tm; Yb, 13.Yb; and Lu, 14.Lu; INO = isonicotinate-N-oxide, have been synthesized by hydrothermal reactions of Ln3+, MnCO3, MnSO4 x H2O, and isonicotinic acid N-oxide (HINO) at 155 degrees C and characterized by single-crystal X-ray diffraction, IR, thermal analysis, luminescence spectroscopy, and the magnetic measurement. The structures are formed by connection of layer, chain, or dimer of Ln-SO4 by the organic connector, INO. They belong to three structural types that are governed exclusively by the size of the ions: type I for the large ions, La, Ce, and Pr; type II for the medium ions, Nd, Sm, Eu, Gd, and Tb; and type III for the small ions, Dy, Ho, Er, Tm, Yb, and Lu. Type I consists of two-dimensional undulate Ln-sulfate layers pillared by INO to form a three-dimensional network. Type II has a 2-fold interpenetration of "3D herringbone" networks, in which the catenation is sustained by extensive pi-pi interactions and O-H...O and C-H...O hydrogen bonds. Type III comprises one-dimensional chains that are connected by INO bridges, resulting in an alpha-Po network. The progressive structural change is due to the metal coordination number decreasing from nine for the large ions via eight to seven for the small ions, demonstrating clearly the effect of lanthanide contraction. The sulfate ion acts as a micro4- or micro3-bridge, connecting two, three, or four metals, and is both mono- and bidentate. The INO ligand acts as a micro3- or micro2-bridge with carboxylate group in syn-syn bridging or bidentate chelating mode. The materials show considerably high thermal stability. The magnetic properties of 4.Nd, 6.Eu, 7.Gd, and 13.Yb and the luminescence properties of 6.Eu and 8.Tb are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号