首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of solvents, halo substituents and surfactants on the aggregation of xanthene dyes (fluorescein and eosin Y) has been investigated. It has been found that polar protic solvents promote the aggregation of both the dyes while polar aprotic solvents hinder the aggregation process. Apolar solvents can disintegrate the aggregates previously formed in aqueous medium. The nature of the driving forces for aggregation in the two dyes is different. Surfactants bearing charge opposite to the dye molecules facilitate aggregation. These observations bear direct relevance to the possible use of fluorescein and eosin Y as quantum yield standards, photosensitizers, laser dyes and biological labels.  相似文献   

2.
Photophysical properties of 5-aminoquinoline (5AQ) have been investigated in various non-polar and polar (protic and aprotic) solvents using steady state and time resolved fluorescence. In aprotic solvents, the spectral maxima depend on the polarity. However, in protic solvents both the fluorescence intensity as well decay time show decrease depending on the hydrogen bonding ability of the solvent. The results suggest that photochemistry 5AQ is quite sensitive towards the polarity as well as protic character of the solvent.  相似文献   

3.
Absorption, steady-state fluorescence, steady-state fluorescence anisotropy, and intrinsic and induced circular dichroism (CD) have been exploited to explore the binding of calf thymus DNA (ctDNA) with three cationic phenazinium dyes, viz., phenosafranin (PSF), safranin-T (ST), and safranin-O (SO). The absorption and fluorescence spectra of all the three dyes reflect significant modifications upon interaction with the DNA. A comparative study of the dyes with respect to modification of fluorescence and fluorescence anisotropy upon binding, effect of urea, iodide-induced fluorescence quenching, and CD measurements reveal that the dyes bind to the ctDNA principally in an intercalative fashion. The effect of ionic strength indicates that electrostatic attraction between the cationic dyes and ctDNA is also an important component of the dye-DNA interaction. Intrinsic and induced CD studies help to assess the structural effects of dyes binding to DNA and confirm the intercalative mode of binding as suggested by fluorescence and other studies. Finally it is proposed that dyes with bulkier substitutions are intercalated into the DNA to a lesser extent.  相似文献   

4.
The fluorescence characteristics of two ketocyanine dyes have been studied in six mixed binary solvents. Several parameters such as the maximum energy E12(F) of fluorescence, the quantum yield Φ12 of fluorescence and the normalized intensity of the fluorescence have been investigated as functions of solvent composition. In protic+aprotic binary mixtures a dramatic change at the aprotic end has been observed. The results point to a preferential solvation of the solute by the protic component.  相似文献   

5.
Abstract Substantial isotope effects have been observed for the dye sensitised photo-oxidation of 1,3-diphenyl-2-pyrazoline in both polar and non polar solvents, implicating singlet oxygen as a reactive intermediate. By way of contrast, a solvent isotope effect upon the direct photo-oxidation of the pyrazoline was only observed when a protic solvent (methanol) was used. It was found that the photophysical properties (e.g. quantum yields and fluorescence lifetimes) of pyrazolines are sensitive to the isotopic composition of protic solvents but not aprotic solvents. The solvent isotope effect observed for the direct photo-oxidation reaction in methanol may not therefore be a true indication of the participation of singlet oxygen. Since this reaction may not be singlet oxygen mediated, an alternative mechanism is proposed.  相似文献   

6.
The natural product hypericin was tested in recent years as a biological photosensitizer with a potential for viral and cellular photodamage. We thus studied extensively its spectroscopy and membrane partitioning. Absorption, fluorescence excitation and emission spectra of the sodium salt (HyNa) were measured in 36 protic and aprotic, polar and apolar, solvents. Electronic transition bands as well as vibrational progressions were identified. Aggregation in some nonpolar solvents and protonation in organic acids were demonstrated. Modeling solvatochromism was done by Lippert equation, by the ET(30) parameter and by the Taft multiparameter approach. In all cases, separation into protic and aprotic solvents gave much better fits to the models. 13C chemical shift data could also be correlated with solvent polarity. They correlated best with Lippert's delta f polarity measure, but tended to fall into two distinct solvent groups--each along different lines--corresponding to protic and aprotic media, respectively. This interesting phenomenon suggests that in the case of the charged and slightly water soluble HyNa, two mechanisms of solvation are involved, each resulting in its own line equation. In aprotic media, dipole-dipole interaction is the predominant solvation mechanism. In protic solvents, the most effective means of solvation is likely to be hydrogen bonding. When intercalated into the liposomal phospholipid bilayer, HyNa is oriented at an angle to the interface, thus experiencing a gradient of solvent polarities: a highly polar environment (similar to methanol) for C-2/5, suggesting that they lie not far from the interface; a moderately polar environment (similar to that of n-propanol) for C-6a/14a, which are somewhat deeper within the bilayer; and a more lipophilic environment (akin to n-hexanol) for C-10/11. The fluorescence excitation peak in liposomes also correlates with an aprotic medium of relatively high polarity, as might be excepted from a molecule in a shallow position in the bilayer.  相似文献   

7.
The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene (band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hy-drogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethyl.amine to the excited naphthalene on the rel.ative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hy-drogen-bonding interaction quantitatively.  相似文献   

8.
The absorption and emission spectroscopic investigations of the C-8-phenyl substituted analogue of the pyrromethene dye PM567 in various polar, non-polar as well as protic and aprotic solvents are reported. The solvatochromic shifts of the spectral bands were studied in a multitude of polar, non-polar and protic, aprotic solvents followed by a multilinear regression in which several solvent parameters were simultaneously analysed. Comparison of the experimental results with those obtained by gas phase ab initio computation with CIS, TD-HF and TD-DFT theories using 6-31G* basis set reveal an overestimation of the experimentally measured excitation parameters by all these theoretical models. However, the trends in the experimental results agree with those calculated theoretically.  相似文献   

9.
Solvation characteristics of ketocyanine dyes (I-VI) have been investigated in pure solvents and heterogeneous media by absorption and fluorescence studies. The dyes are good reporters of solvent polarity. In protic solvents they exist as equilibrium mixtures of bare and hydrogen-bonded form in the ground state (S0), the latter being the emitting species. In aprotic solvents of low polarity association of the S1 state of the dye takes place. In aqueous micellar media the dye resides at the micelle water interface. The binding constant for dye-micelle interaction has been determined. Fluorescence data in beta-cyclodextrine solution resemble that for that neutral micellar solution indicating that the interaction between the -OH group of the heterogeneous part (micelle/cyclodextrine cavity) and the carbonyl oxygen of the dye is important in both the cases.  相似文献   

10.
Spectroscopic studies of Methyl violet in protic (water, methanol, ethanol, isopropanol and n-butanol) and aprotic solvents (acetone, DMF) were carried out. UV-Visible absorption spectra of Methyl violet in protic solvents showed a hypsochromic shift, as the solvent polarity was changed from less polar to more polar, while a bathochromic shift was observed for aprotic solvents. Transition energy of Methyl violet in different solvents was correlated with solvatochromic parameters to study solute–solvents interactions. The Kamlet–Taft, Catalan and unified scale models were applied to investigate interactions between Methyl violet and solvents. The best agreement is found for the Catalan model.  相似文献   

11.
Absorption and fluorescence (steady-state and time-correlated) techniques are used to study the photophysical characteristics of the pyrromethene 650 (PM650) dye. The presence of the cyano group at the 8 position considerably shifts the absorption and fluorescence bands to lower energies with respect to other related pyrromethene dyes; this is attributed to the strong electron-acceptor character of the cyano group, as is theoretically confirmed by quantum mechanical methods. The fluorescence properties of PM650 are intensively solvent-dependent. The fluorescence band is shifted to lower energies in polar/protic solutions, and the evolution of the corresponding wavelength with the solvent is analysed by a multicomponent linear regression. The fluorescence quantum yield and the lifetime strongly decrease in polar/protic solvents, which can be ascribed to an extra nonradiative deactivation, via an intramolecular charge-transfer state (ICT state), favoured in polar media.  相似文献   

12.
Trifluoroacetic acid was proposed as a new effective catalyst for organic sol-gel synthesis. The influence of the solvent (polar or nonpolar, protic or aprotic) on the sol-gel process was studied.  相似文献   

13.
Absorption and emission spectroscopic studies of (dibenzoylmethanato)boron difluoride (1bf) in various polar and non-polar, protic and aprotic solvents are reported. The solvatochromic shifts of the spectral bands were examined in terms of solvent properties, including donor and acceptor numbers, followed by multilinear regression in which several solvent parameters were simultaneously analyzed. This π-conjugated positively charged system exhibits excellent solvatochromism. Variations in the electronic absorption spectral characteristics of 1bf were studied in solution in the presence of zinc perchlorate. Absorption spectral studies indicate stable complex formation between the zinc ion and 1bf in the ground state in aprotic dipolar benzonitrile rather than in protic polar solvent methanol. Zinc ion binding of 1bf was theoretically rationalized through frontier molecular orbital interaction.  相似文献   

14.
The correlation of dibutyl-ether-ester of xanthene dye structures with their photophysical properties is discussed with respect to their capability as fluorescent probes based on ultraviolet–visible absorption, fluorescence spectra and fluorescence lifetimes measured in different solvents. It was found that the dibutyl-ether-ester of fluorescein is very weakly emissive in aprotic solvents, but fairly strong fluorescent in alcohols. The dependence of fluorescence quantum yield (Φf) and lifetime (τf) on solvent polarity suggests non-involvement of the intra-molecular photoinduced electron transfer (PeT) mechanism, suggested previously to account for the emission efficiency of fluorescein derivatives. The xanthene dyes intend to self-assemble in aprotic solvents, less polar solvents facilitate the aggregation while hydrogen bonding disfavor it. The formation of non-emissive H-aggregates is proposed to be responsible for their fluorescent behavior. The esterification showed stronger influences on the photophysics than the etherification, i.e. the former caused larger reduction of Φf owing to the internal conversion. The halogenation decreases the fluorescence quantum yield and lifetime of the xanthene dyes, owing to the enhancement of inter-system crossing process.  相似文献   

15.
A new class of heterocycles of isoindole fused imidazoles with phenolic subunits has been readily synthesized by a two-step one-pot reaction. In aprotic solvent they show high fluorescent properties (Phi(F) up to 0.93), but in protic polar solvent fluorescent intensity decreases. They show green fluorescence in weak acidic medium such as acetic acid but lack emission in basic medium. The compounds can also stain human squamous epithelium cells.  相似文献   

16.
The gelation process of TEOS sols in three different solvents using di-n-butyltin dilaurate (DBTL) as polycondensation catalyst has been investigated. Sol compositions were similar to those employed in the field of stone consolidation for the conservation of historical buildings. Three different systems were studied: TEOS in ethanol (S-EtOH) which was tested to explain gelation in protic solvents; TEOS in a mixture of methylethylketone/acetone (S-MA) to represent aprotic solvents; and TEOS in a blend of MEK/ethanol (S-ME) for comparison of a system with properties intermediate between protic and aprotic solvents. The gelation process was studied by measuring the viscoelastic behavior near the gelation point (GP). A scaling exponent (Δ) was determined for the elastic modulus, G(ω)′ and the viscous modulus, G′′(ω), which both follow the same power law, ωΔ, at GP. The fractal dimension, df, was calculated from the scaling exponent, Δ, for each TEOS-DBTL system. For each type of solvent studied, values of Δ from 0.34 to 0.53 with df of 1.9–2.2 were obtained. The results suggest that DBTL leads to a TEOS polycondensation mechanism similar to that observed for a base-catalyst system. However, the change in df suggests that there is a significant effect of the solvent on aggregation mechanisms of the gelation process. A diffusion limited cluster–cluster aggregation mechanism (DLCCA) was observed when ethanol was used as protic solvent, while a reaction limited cluster–cluster aggregation mechanism (RLCCA) was observed for MEK/acetone (aprotic solvent).  相似文献   

17.
A trans-4-(p-N,N-dimethylaminostyryl)-N-vinylbenzylpyridinium chloride (vbDMASP) fluorescence probe was optimized in ground and excited state as a function of change in the microenvironment polarity, using the Amsol HyperChem program package. In the calculations, protic and aprotic solvents were used. On this basis a change in the molecule geometry after excitation, depending on the surrounding solvent, was determined. Absorption and steady-state fluorescence spectra of vbDMASP in the solvent of different polarity and in the model water-glycerol solutions were also recorded. On the basis of Stokes' shift change with the Onsager polarity scale a change in the dipole moment of the probe during transition from ground to excited state, in protic and aprotic solvents was determined. Since during the sol-gel transition of tetraethylorthosilane in the acidic environment both polarity and viscosity of the microenvironment change the vbDMASP probe was applied and fluorescence time-resolved measurements were done. On this basis the correlations between the results of time-resolved measurements for the multichromophoric probe applied in the gelation process and molecular optimization data are discussed.  相似文献   

18.
Intramolecular charge-transfer reaction in chiral (S) 1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM) has been investigated in the condensed phase and in jet-cooled conditions by means of laser-induced fluorescence, dispersed emission, resonance-enhanced two-photon ionization, and IR-UV double resonance experiments, as well as quantum chemical calculations. In the condensed phase, THIQM only shows local emission in nonpolar and protic solvents and dual emission in aprotic polar solvents, where the solvent-polarity dependent Stokes shifted emission is ascribed to a state involving charge transfer from the nitrogen lone pair to the benzene π-cloud. Ab initio calculations reveal two low-energy conformers, which are observed in jet-cooled conditions. In the most stable conformer, THIQM(I), the CH(2)OH substituent acts as a hydrogen bond donor to the nitrogen lone pair in the equatorial position, while the second most stable conformer, THIQM(II), corresponds to the opposite NH···O hydrogen bond, with the nitrogen lone pair in the axial position. The two low-energy jet-cooled conformers of THIQM evidenced from the laser-induced fluorescence and dispersed emission spectra only show structured local emission. Complexes with usual solvents reproduce the condensed phase properties. The jet-cooled complex with aprotic polar solvent acetonitrile shows both local emission and charge transfer emission as observed in solution. The jet-cooled hydrate mainly shows local emission due to the unavailability of the nitrogen lone pair through intermolecular hydrogen bonding.  相似文献   

19.
Adsorption properties of acetylsalicylic acid (AA), ibuprofen and acetaminophen deposited from volatile solvents with varying protic/aprotic properties on vacuum-evaporated silver films were characterized using surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman spectroscopy (SERS). SERS preferentially enhances monolayer Raman shifts, while SEIRA can enhance the infrared absorbance of the monolayer and multilayers. To our best knowledge, this is the first reported study of these molecules using a combination of SERS/SEIRA. SERS revealed that AA and ibuprofen adsorbed ionically in monolayers, independent of the deposition solvents used in the process. SEIRA experiments showed that AA multilayers condensed molecularly using a deposition solvent with polar bonds. However, when an alkane deposition solvent with non-polar bonds such as n-heptane was used, AA adsorbed as acetylsalicylate ions in the first few multilayers, while ibuprofen always adsorbed as the free acid in the multilayer. These ionization trends depend upon the affinity of AA and ibuprofen for the underlying silver film. TPD experiments on silver powders further demonstrated that ibuprofen affinity for silver was less than AA. Furthermore, SEIRA indicated that acetaminophen adsorbed as multilayers of metastable polymorphs using protic or polar aprotic deposition solvents. Protic deposition solvents gave higher quality SERS spectra of an acetaminophen monolayer in comparison to polar aprotic deposition solvents. Such studies could find significant applications in biochemical and nanotechnology processes such as drug delivery, catalysis, and tissue engineering and will contribute to the understanding of the impact and fate of analgesics released into the environment.  相似文献   

20.
The reaction kinetics of 5-substituted 2-thiophenesulphonyl chlorides with anilines were studied in fourteen pure solvents (protic and aprotic) and in mixed solvents at 25°. The approach of multiparameter equations to describe solvent effects according to the Palm-Koppel and Krygowski-Fawcett models was unsuccessful. Instead satisfactory single parameter linear correlations, one for protic solvents with positive slope and another for aprotic solvents with negative slope, were found by using the dielectric constant ?. An SAN mechanism for these reactions was proposed, bond-making being the rate-determining step for protic solvents and bond-breaking for aprotic ones. The analysis of some data for the reactions of benzenesulphonyl chloride showed that the mechanism is analogous also for this substrate and the rate-determining step is depending on both solvent and nucleophile. Hammett ρ-values for the reactions of substituted 2-thiophenesulphonyl chlorides with aniline are in accord with the proposed mechanism. ?-Values for the reactions of 2-thiophenesulphonyl chloride with substituted anilines are related to the solvent effects by equation ? = ? 15.7 f(?) + 0.113E + 3.94. The solvent effects on these values can be interpreted by the effect of the dielectric constant and the influence of H-bonding. Mixed solvents are characterized by the presence of a maximum rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号