首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

2.
3.
4.
Diacetylplatinum(II) complexes [Pt(COMe)2()] ( = bpy, 3a; 4,4′-t-Bu2-bpy, 3b), obtained by the reaction of [Pt(COMe)2X(H)()] with NaOH in CH2Cl2/H2O, were found to undergo oxidative addition reactions with halogens (Br2, I2) yielding the platinum(IV) complexes (trans, OC-6-13)/(cis, OC-6-32) [Pt(COMe)2X2()] ( = bpy, X = Br, 4a/4b; I, 4c/4d;  = 4,4′-t-Bu2-bpy, X = Br, 4e/4f; I, 4g/4h). The diastereoselectivity of the reactions proved to be strongly dependent on the solvent. The oxidative addition of (SCN)2 resulted in the formation of (OC-6-13)-[Pt(COMe)2(SCN)2()] ( = bpy, 4i; 4,4′-t-Bu2-bpy, 4j). In a reaction the reverse of their formation, the diacetylplatinum(II) complexes 3 underwent oxidative addition with anhydrous HX (X = Cl, Br, I), prepared in situ from Me3SiX/H2O, yielding diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2X(H)()] ( = bpy, X = Cl, 5a; Br, 5b; I, 5c;  = 4,4′-t-Bu2-bpy, X = Cl, 5d; Br, 5e; I, 5f). Furthermore, diacetyldihaloplatinum complexes 4 were found to undergo reductive elimination reactions in boiling methanol yielding acetylplatinum(II) complexes [Pt(COMe)X()] ( = bpy, X = Br, 6b; I, 6c;  = 4,4′-t-Bu2-bpy, X = Br, 6e; I, 6f). All complexes were characterized by microanalysis, IR and 1H and 13C NMR spectroscopy. Additionally, the bis(thiocyanato) complex 4j was characterized by single-crystal X-ray diffraction analysis.  相似文献   

5.
6.
7.
The oxidative addition of cyclic ditelluride 1-oxa-5,6-ditelluraspirooctane, Te(2)C(5)H(8)O, to bis(triphenylphosphine)(norbornene)platinum(0), [Pt(PPh(3))(2)(eta(2)-nb)], and to [1,8-bis(diphenylphosphino)naphthalene](norbornene)platinum(0), [Pt(dppn)(eta(2)-nb)], lead to the formation of dinuclear and mononuclear tellurolato platinum(ii) complexes, respectively, as a consequence of Te-Te bond cleavage; no Te-C bond cleavage was observed.  相似文献   

8.
Platinum(IV) halides formed complexes of the type PtL2X4 [L=1-vinyl imidazole (1,-VIm), 1-methylimidazole (1-MeIm), 1,2-dimethylimidazole (1,2-Me2Im), 1-vinyl-2-methylimidazole (1-V-2-MeIm), 2-methylimidazole (2-MeIm), 2-ethylimidazole (2-EtIm), 2-isopropylimidazole (2-i-PrIm), and 4-methylimidazole (4-MeIm); X=Cl, Br] in neutral aqueous solution. The 1-n-butylimidazole (1-n-BuIm) ligand yielded only (LH)2PtX6 compound in the same medium. The compounds were characterised by elemental analyses, IR, UV-VIS and 1HNMR spectra.  相似文献   

9.
We have prepared a series of gallium(III) complexes of the redox active iminopyridine ligand (IP). Reaction of GaCl(3) with iminopyridine ligand (IP) in the presence of either two or four equivalents of sodium metal resulted in the formation of deep green (IP(-))(2)GaCl (1), or deep purple [(DME)(3)Na][(IP(2-))(2)Ga] (2a), respectively. Complex 1 is paramagnetic with a room temperature magnetic moment of 2.3 μ(B) which falls to 0.5 μ(B) at 5 K. These observations indicate that two ligand radicals comprise a triplet at room temperature which becomes a singlet due to antiferromagnetic coupling at low temperature. Complex 2 is diamagnetic. Cyclic voltammograms recorded on 0.3 M Bu(4)NPF(6) THF solutions of [Na(THF)(6)][(IP(2-))(2)Ga](-) (2b) indicate that oxidation of 2b occurs in two two-electron steps at -1.31 V and -0.54 V vs. SCE. The observation of two-electron redox events indicates that electronic coupling through the gallium(III) center is minimal and that the two IP ligand on 2b are oxidized concurrently. Oxidation of 2 with one equivalent of MeS-SMe afforded the two-electron oxidized product (IP(-))(2)Ga(SMe) (3). This complex has an electronic structure analogous to 1. Accordingly, both 1 and 3 are deep green in color and magnetic susceptibility measurements performed on 3 confirm the triplet character of the complex at room temperature. Electron paramagnetic resonance experiments on 1 and 3 display a quartet signal at g = 2.0 which confirmed the triplet nature of the compounds, and a half field signal consistent with the integer spin state.  相似文献   

10.
Reaction of tetrachlorodiacetatodirhenium dihydrate with triphenylphosphineplatinum (II) triacetatoargentate(I) produces a new binuclear platinum complex with acetate bridges, bis[(2-acetato)acetatotriphenylphosphine]diplatinum(II). The new complex is characterized by x-ray structural analysis, IR, and PMR spectroscopies. The Re(III) complex in this reaction is not only the source of chloride ions, which are necessary for precipitation of silver, and the acetate acceptor, but also the silver(I) reductant which is oxidized during the reaction to Re(IV).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1894–1899, August, 1989.  相似文献   

11.
Reaction of carbon diselenide in 3 to 1 molar ratio, and areneselenols in equimolar ratio, with trans-IrCl(CO)(PPPh3)2 and PtL4, gives oxidative addition products, IrCl(CO)CSe2)(PPh3)2, Pt(CSe2)L2, IrHCl(CO)(SeC6H4Me-p)(PPh3)2, and PtH(SeR)L2, respectively (R = Ph and p-MeC6H4; L = PPh3 and PPh2Me). However, reactions of PtL4 with an excess of areneselenols afford bis(arylselenide) complexes Pt(SeR)2L2. The configurations of these complexes are discussed on the basis of their IR and PMR spectra. The carbon diselenide adducts are suggested to have configurations similar to the corresponding carbon disulfide adducts. The platinum hydrides are found to exist as a mixture of cis and trans isomers in solution, both the isomers being labile with regard to dissociative exchange of the tertiary phosphine ligands. The trans configurations of Pt(SeR)2(PPh2Me)2 are unambiguously shown by the virtually coupled triplet pattern of the PPh2Me signals.  相似文献   

12.
13.
Rate constants and activation parameters of oxidative addition reactions of [PtMe2(2,2′-bipyridine)] with EtI and [Pt(p-MeC6H4)2 (2,2′-bipyridine)] with MeI in solvents acetone and benzene have been obtained very easily and with good accuracy from variable-temperature spectrophotometric kinetic data using a method based on nonisothermal analysis. The results are compared with those obtained by the traditional isothermal method. It is shown that there are significant advantages to measuring the reaction rates under variable-temperature kinetic conditions, as compared to the constant-temperature kinetic method.  相似文献   

14.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

15.
By means of density functional theory calculations, we computationally analyze the physical factors governing the oxidative addition of aryl halides to gold(I) complexes. Using the activation strain model of chemical reactivity, it is found that the strain energy associated with the bending of the gold(I) complex plays a key role in controlling the activation barrier of the process. A systematic study on how the reaction barrier depends on the nature of the aryl halide, ligand, and counteranion allows us to identify the best combination of gold(I) complex and aryl halide to achieve a feasible (i.e., low barrier) oxidative addition to gold(I), a process considered as kinetically sluggish so far. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The diphosphane o-C6H4(PMe2)2 reacts with GaX3 (X = Cl, Br, or I) in a 1:1 molar ratio in dry toluene to give trans-[GaX2{o-C6H4(PMe2)2}2][GaX4], the cations of which contain the first examples of six-coordinate gallium in a phosphane complex. The use of a 1:2 ligand/GaCl3 ratio produced [GaCl2{o-C6H4(PMe2)2}][GaCl4], containing a pseudotetrahedral cation, and similar pseudotetrahedral [GaX2{o-C6H4(PPh2)2}][GaX4] complexes are the only products isolated with the bulkier o-C6H4(PPh2)2. On the other hand, Et2P(CH2)2PEt2, which has a flexible aliphatic backbone, formed [(X3Ga)2{mu-Et2P(CH2)2PEt2}], in which the ligand bridges two pseudotetrahedral gallium centers. The diarsane, o-C6H4(AsMe2)2, formed [GaX2{o-C6H4(AsMe2)2}][GaX4], also containing pseudotetrahedral cations, and in marked contrast to the diphosphane analogue, no six-coordinate complexes form; a very rare example where these two much studied ligands behave differently towards a common metal acceptor. The complexes [(I3Ga)2{mu-Ph2As(CH2)2AsPh2}] and [GaX3(AsMe3)] are also described. The X-ray structures of trans-[GaX2{o-C6H4(PMe2)2}2][GaX4] (X = Cl, Br or I), [GaCl2{o-C6H4(PPh2)2}][GaCl4], [GaX2{o-C6H4(AsMe2)2}][GaX4] (X = Cl or I), [(I3Ga)2{mu-Ph2As(CH2)2AsPh2}], and [GaX3(AsMe3)] (X = Cl, Br or I) are reported, and the structural trends are discussed. The solution behavior of the complexes has been explored using a combination of 31P{1H} and 71Ga NMR spectroscopy.  相似文献   

17.
Some hitherto unknown complexes of thiosermicarbazide (Htsc) and antimony(III) halides have been synthesized in 1,4-dioxane. The elemental analyses have indicated that these compounds are of the type Sb(CH5N3S)Cl3 and Sb(CH5N3S)X3.C4H8O2, where X = Br or I. The electronic and vibration spectral analyses have shown that Htsc acts as a bidentate ligand in these complexes, linking through sulphur and “the hydrazine terminal nitrogen” to Sb(III).  相似文献   

18.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

19.
The platinum(0) monocarbonyl complex, [(Cy(3)P)(2)Pt(CO)], was synthesized by reaction of [(Cy(3)P)(2)Pt] with [(η(5)-C(5)Me(5))Ir(CO)(2)] and subsequent irradiation. X-ray structure analysis was performed and represents the first structural evidence of a platinum(0) monocarbonyl complex bearing two free phosphine ligands. Its corresponding dicarbonyl complex [(Cy(3)P)(2)Pt(CO)(2)] was synthesized by treatment of [(Cy(3)P)(2)Pt] with CO at -40 °C and confirmed by X-ray structure analysis.  相似文献   

20.
本文报道一种合成标题配合物Pt(diphos)(CO)2的简便方法及其与碳-卤键的氧化加成反应. 在一氧公碳气氛存在下用NaBH4还原[Pt(diphos)Cl2]可“原位"得到[Pt(diphos)(CO)2]的THF溶液, 能与卤代烃发生氧化加成反应, 并用^1H NMR和^3^1PNMR谱进行了研究. 氧化加成反应按自由基非链式机理进行, 加成产物[Pt(diphos)X2]之一[Pt(d(i-Pr)pe)I2]经过分子结构测定, 反应能力与卤代烃和双膦螯合配体的电子性质有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号