首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with numerical methods for two-phase incompressible flows assuming a sharp interface model for interfacial stresses. Standard continuum models for the fluid dynamics in the bulk phases, for mass transport of a solute between the phases and for surfactant transport on the interface are given. We review some recently developed finite element methods for the appropriate discretization of such models, e.?g., a pressure extended finite element (XFE) space which is suitable to represent the pressure jump, a space-time extended finite element discretization for the mass transport equation of a solute and a surface finite element method (SurFEM) for surfactant transport. Numerical experiments based on level set interface capturing and adaptive multilevel finite element discretization are presented for rising droplets with a clean interface model and a spherical droplet in a Poisseuille flow with a Boussinesq-Scriven interface model.  相似文献   

2.
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.  相似文献   

3.
We present a systematic study of capillary filling for multi-phase flows by using mesoscopic lattice Boltzmann models describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at changing the density ratio between liquid and gas phases, δρ/ρ and the ratio, δξ/H, between the typical size of the capillary, H, and the interface width, δξ. It is shown that numerical results yield quantitative agreement with the Washburn law when both ratios are large, i.e. as the hydrodynamic limit of a infinitely thin interface is approached. We also show that in the initial stage of the filling process, transient behaviour induced by inertial effects and “vena contracta” mechanisms, may induce significant departure from the Washburn law. Both effects are under control in our lattice Boltzmann equation and in good agreement with the phenomenology of capillary filling.  相似文献   

4.
We have imagined a numerical experiment to explore the onset of turbulent intermittency associated with a spatial perturbation of the correlation length. We place two isotropic regions, with different integral scales, inside a volume where the turbulent kinetic energy is initially uniform and leave them to interact and evolve in time. The different length scales produce different decay rates in the two regions. Since the smaller-scale region decays faster, a transient turbulent energy gradient is generated at the interface between the two regions. The transient is characterized by three phases in which the kinetic energy gradient across the interface grows, peaks and then slowly decays. The transient lifetime is almost proportional to the initial ratio of the correlation lengths. The direct numerical simulations also show that the interface width grows in time. The velocity moments inside this interaction zone are seen to depart from their initial isotropic values and, with a certain lag, the anisotropy is seen to spread to small scales. The longitudinal derivative moments also become anisotropic after a few eddy turnover times. This anisotropic behaviour is different from that observed in sheared homogeneous turbulent flows, where high transverse derivative moments are generated, but longitudinal moments almost maintain the isotropic turbulence values. Apart from the behaviour of the energy gradient transients, the results also show the timescaling of the interface diffusion width, and data on the anisotropy of the large and small scales, observed through one-point statistics determined inside the intermittency sublayer, which is associated with the interaction zone.  相似文献   

5.
用视密度加权平均二阶矩模型模拟旋流两相流动   总被引:1,自引:0,他引:1  
本文用视密度加权平均代替时平均,建立了视密度加权平均的统一二阶矩两相湍流模型方程组(MUSM),其中用体积分数代替了数密度,用颗粒驰豫时间作为封闭两相脉动速度关联方程耗散项的时间尺度,并引入了颗粒视在的气体速度脉动的输运方程。用MUSM模型模拟了旋流数为0.47的气粒两相流动。并和实验结果及时间平均的USM模型的模拟结果进行了对照,两种模型均能较好地预报的两相的轴向和切向速度,轴向和切向脉动速度。此外,MUSM模型可以减少所用方程数,节省计算量。因此视密度加权平均的统一二阶矩两相湍流模型是一种对时间平均的统一二阶矩模型的改进,今后可以进一步扩大应用。  相似文献   

6.
We propose a new model and a solution method for two-phase compressible flows. The model involves six equations obtained from conservation principles applied to each phase, completed by a seventh equation for the evolution of the volume fraction. This equation is necessary to close the overall system. The model is valid for fluid mixtures, as well as for pure fluids. The system of partial differential equations is hyperbolic. Hyperbolicity is obtained because each phase is considered to be compressible. Two difficulties arise for the solution: one of the equations is written in non-conservative form; non-conservative terms exist in the momentum and energy equations. We propose robust and accurate discretisation of these terms. The method solves the same system at each mesh point with the same algorithm. It allows the simulation of interface problems between pure fluids as well as multiphase mixtures. Several test cases where fluids have compressible behavior are shown as well as some other test problems where one of the phases is incompressible. The method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.  相似文献   

7.
从一般高斯型色噪声模型出发,通过泛函导数,应用小关联时间,近似计算多维色噪声,得到有效Fokker-Planck方程.将其应用到两相湍流中得到颗粒相的概率密度函数输运方程,从而得到颗粒相的二阶矩模型.将颗粒应力方程简化成代数方程,建立代数应力模型.将对流扩散方程的有限分析法运用到求解两相流模型中,对壁面两相射流进行数值模拟,并将求解结果与实验结果进行对比分析.  相似文献   

8.
Starting with the Vlasov-Boltzmann equation for a binary fluid mixture, we derive an equation for the velocity field u when the system is segregated into two phases (at low temperatures) with a sharp interface between them. u satisfies the incompressible Navier-Stokes equations together with a jump boundary condition for the pressure across the interface which, in turn, moves with a velocity given by the normal component of u. Numerical simulations of the Vlasov-Boltzmann equations for shear flows parallel and perpendicular to the interface in a phase segregated mixture support this analysis. We expect similar behavior in real fluid mixtures.  相似文献   

9.
李洋  苏婷  梁宏  徐江荣 《物理学报》2018,67(22):224701-224701
提出了一种改进的基于相场理论的两相流格子Boltzmann模型.通过引入一种新的更加简化的外力项分布函数,使得此模型克服了前人工作中界面力尺度与理论分析不一致的问题,并且通过Chapman-Enskog多尺度分析表明,所提出的模型能够准确恢复到追踪界面的Cahn-Hilliard方程和不可压的Navier-Stokes方程,并且宏观速度的计算更为简化.利用所提模型对几个经典两相流问题,包括静态液滴测试、液滴合并问题、亚稳态分解以及瑞利-泰勒不稳定性进行了数值模拟,发现本模型可以获得量级为10-9极小的虚假速度,并且这些算例获取的数值解与解析解或已有的文献结果相吻合,从而验证了模型的准确性和可行性.最后,利用所发展的两相流格子Boltzmann模型研究了随机扰动的瑞利-泰勒不稳定性问题,并着重分析了雷诺数对流体相界面的影响.发现对于高雷诺数情形,在演化前期,流体界面出现一排“蘑菇”形状,而在演化后期,流体界面呈现十分复杂的混沌拓扑结构.不同于高雷诺数情形,低雷诺数时流体界面变得相对光滑,在演化后期未观察到混沌拓扑结构.  相似文献   

10.
We present a diffuse-interface all-pressure flame model that transitions smoothly between subcritical and supercritical conditions. The model involves a non-equilibrium liquid/gas diffuse interface of van der Waals/Korteweg type embedded into a non-ideal multicomponent reactive fluid. The multicomponent transport fluxes are evaluated in their thermodynamic form in order to avoid singularities at thermodynamic mechanical stability limits. The model also takes into account condensing liquid water in order to avoid thermodynamic chemical instabilities. The resulting equations are used to investigate the interface between cold dense and hot light oxygen as well as the structure of diffusion flames between cold dense oxygen and gaseous-like hydrogen at all pressures, either subcritical or supercritical.  相似文献   

11.
We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young–Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.  相似文献   

12.
It is shown that the conventional technique of substituting the field strength at the space charge-emitter interface that is calculated with the Poisson equation into the Fowler-Nordheim formula considerably overestimates the effect of space charge on field electron emission. In this work, the space-charge-induced field attenuation as a function of the emission current density and radius of curvature of the emitter surface is derived using the model of a planar space-charge layer. It is argued that field electron emission cannot be studied in terms of the spherical diode model, since it assumes the presence of a space charge on the back (nonemitting) emitter surface, which is in fact absent. It is stated that one should consider the discrete character of the charges when investigating the space charge in field electron emission, because the mean spacing between the electrons emitted far exceeds the emission barrier width.  相似文献   

13.
由颗粒运动的朗之万方程出发,对流体脉动速度采用扩维方法,得到两个不同层次的PDF输运方程.通过对颗粒运动方程求解和高斯分布假设,解决PDF方程的封闭问题,获得颗粒二阶矩模型,然后将颗粒应力方程简化成代数方程,建立代数应力模型.将对流扩散方程的有限分析法运用到求解两相流模型中,对壁面两相射流进行数值模拟,对比分析数值结果与实验结果.  相似文献   

14.
一种模拟大密度比多相流的混合算法   总被引:1,自引:0,他引:1  
吴杰  徐爽  赵宁 《计算物理》2013,30(1):1-10
在扩散界面法(diffuse interface method,DIM)的基础上提出一种能够处理大密度比(large density ratio)的多相流混合算法.流场信息通过格子波尔兹曼方法(lattice Boltzmann method,LBM)获得;相界面通过直接求解Cahn-Hilliard(C-H)方程确定.为保证在大密度比情况下求解界面方程的稳定性,采用二阶迎风格式来离散方程的对流项.通过对Rayleigh-Taylor(R-T)不稳定、液体中的气泡上升及液滴撞击干燥壁面的数值模拟,验证了方法的可行性.  相似文献   

15.
陈海楠  孙东科  戴挺  朱鸣芳 《物理学报》2013,62(12):120502-120502
建立了二维双组分两相流的大密度比格子玻尔兹曼方法 (lattice Boltzmann method, LBM)模型. 该模型基于改进的Shan-Chen伪势多相流LBM模型, 结合采用不同时间步长的方法, 实现密度比达800以上的气液两相流模拟. 为了对模型进行验证, 模拟了在不同气液相互作用系数和密度比条件下气泡内外压力差与其半径之间的关系, 其结果满足Laplace定律. 将所建立的大密度比LBM与介观尺度的元胞自动机(cellular automaton, CA)和有限差分法(FDM)相耦合, 用LBM模拟气液两相流, 用CA方法模拟固相生长, 用有限差分法模拟温度场, 采用LBM-CA-FDM耦合模型对定向凝固过程中凝固前沿的气泡与液-固界面之间的相互作用进行模拟研究. 结果表明, 绝热气泡的存在影响了温度场分布, 使得凝固前沿接近气泡时, 液-固界面凸起, 在不同的固相生长速度条件下, 出现凝固前沿淹没气泡或气泡脱离凝固前沿的不同情况, 模拟结果与实验结果符合良好. 关键词: 格子玻尔兹曼方法 元胞自动机 凝固 气泡  相似文献   

16.
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows.  相似文献   

17.
We develop a numerical method to simulate a two-phase compressible flow with sharp phase interface on Eulerian grids. The scheme makes use of a level set to depict the phase interface numerically. The overall scheme is basically a finite volume scheme. By approximately solving a two-phase Riemann problem on the phase interface, the normal phase interface velocity and the pressure are obtained, which is used to update the phase interface and calculate the numerical flux between the flows of two different phases. We adopt an aggregation algorithm to build cell patches around the phase interface to remove the numerical instability due to the breakdown of the CFL constraint by the cell fragments given by the phase interface depicted using the level set function. The proposed scheme can handle problems with tangential sliping on the phase interface, topological change of the phase interface and extreme contrast in material parameters in a natural way. Though the perfect conservation of the mass, momentum and energy in global is not achieved, it can be quantitatively identified in what extent the global conservation is spoiled. Some numerical examples are presented to validate the numerical method developed.  相似文献   

18.
In immiscible two-phase flows, jumps or kinks are present in the velocity and pressure fields across the interfaces of the two fluids. The extended finite element method (XFEM) is able to reproduce such discontinuities within elements. Robust and accurate interface capturing schemes with no restrictions on the interface topology are thereby enabled. This paper investigates different enrichment schemes and time-integration schemes within the XFEM. Test cases with and without surface tension on moving or stationary meshes are studied and compared to interface tracking results when possible. A particularly useful setting is extracted which is recommended for two-phase flows. An extension of this formulation for the simulation of free-surface flows and of floating objects is proposed.  相似文献   

19.
宋昱  王飞  郝鹏飞  何枫 《计算物理》2008,25(1):75-82
使用level set和volume of fluid(VOF)方法对考虑壁面接触效应的不可压缩两相微流动进行数值模拟.对于level set方法,计算基于MAC网格,使用二阶投影算法求解二维Navier-Stokes(N-S)方程和level set函数方程;对于VOF方法,通过引入计算网格内的体积分数,将流场的参数转化为体积平均值,界面的形状由体积分数连续方程的解决定.给出一些计算实例,并和现有的实验结果进行比较.  相似文献   

20.
By using the Onsager principle of minimum energy dissipation, the hydrodynamic boundary conditions at the fluid–solid interface are shown to be the natural emergent behavior of microscopic interactions that lead to the interfacial tension and the tangential friction at the fluid–solid interface [T. Qian, C. Qiu, P. Sheng, J. Fluid Mech. 611 (2008) 333]. This is satisfying because the equations of motion, e.g., the Stokes equation, and the hydrodynamic boundary conditions can now be derived from a unified framework. The resulting continuum hydrodynamic formulation yields predictions for immiscible two-phase flows that are in quantitative agreement with molecular dynamic simulations. In particular, the classical problem of the moving contact line is resolved. We also show results on the moving contact line over chemically patterned surfaces which exhibit striking nanoscale characteristics as well as sub-quadratic dependence of the moving contact line dissipation on its average velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号