首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, the compactness of quasi-conforming element spaces and the—convergence of quasi-conforming element method are discussed. The well-known Rellich compactness theorem is generalized to the sequences of quasi-conforming element spaces with certain properties, and the generalized Poincare inequality. The generalized Friedrichs inequality and the generalized inequality of Poincare-Friedrichs are proved true for them. The error estimates are also given. It is shown that the quasi-conforming element method is convergent if the quasi-conforming element spaces have the approximability and the strong continuity, and satisfy the rank condition of element and pass the test IPT. As practical examples, 6-parameter, 9-paramenter, 12-paramenter, 15-parameter, 18-parameter and 21-paramenter quasi-conforming elements are shown to be convergent, and their L22()-errors are O(h), O(h), O(h 2 ), O(h 2 ), O(h ), and O(h 4 ) respectively.  相似文献   

2.
The complex fluid-dynamic aspects of a turbulent recirculating flow in a cavity with axial throughflow, and a rotating wall, were investigated by adopting a simple procedure for evaluating the turbulent stresses. The flow field was divided into two regions, a core and a wall region respectively. A wall function was adopted in the zones near to the solid boundaries, while a constant eddy diffusivity was assumed, in the core, following the indications of computed heat transfer coefficients in comparison with existing experimental data. The distributions of the stream function and of the tangential velocity are presented for a range of the rotational Reynolds number of the rotating wall and of the Reynolds number of the throughflow.
Turbulente Rezirkulationsströmung in einem Hohlraum
Zusammenfassung Die komplizierten fluiddynamischen Aspekte einer turbulenten Rezirkulationsströmung in einem Hohlraum mit axialem Durchfluß und einer rotierenden Wand werden unter Verwendung einer vereinfachten Methode zur Berechnung der turbulenten Spannungen betrachtet. Das Strömungsfeld wird in einen Kern und einen Wandbereich aufgeteilt. Für die wandnahen Zonen wird eine Wandfunktion angenommen, während im Kern mit konstanter Wirbeldiffusivität gerechnet wird, was durch den Vergleich berechneter mit gemessenen Wärmeübergangskoeffizienten gerechtfertigt erscheint. Verteilungen der Stromfunktion und der tangentialen Geschwindigkeit sind für einen bestimmten Bereich der Reynoldszahlen für die Wandrotation und der für den Durchfluß angegeben.

Nomenclature L axial length of enclosure - P dimensionless pressure, p*2 - p static pressure - R dimensionless radial coordinate, r/r* - r radial coordinate - r* reference length, equal to rO for enclosure - ri radii of inlet and exit apertures - Re Reynolds number, v*r*/ - Rei pipe Reynolds number, ¯vzi(2ri)/ - Ret turbulent Reynolds number, Re(/) - Re rotational Reynolds number, r 0 2 / - t dimensionless time,t/(r*/v*) - t time - Vr, V, Vz dimensionless velocity components, Vr/v*, v, vz/v* - vi turbulent fluctuation of the i-component of velocity - vr, v, vz velocity components - v* reference velocity, equal to ¯vzi for enclosure - X coordinate along a wall, x/r* - Y coordinate normal to a wall, y/r* - Z dimensionless axial coordinate, z/r* - z axial coordinate - eddy diffusivity for momentum - dynamic viscosity - kinematic viscosity - density - shear stress - dimensionless shear stress, /v*2 - dimensionless stream function, /r*2v*2 - stream function - angular velocity - tangential vorticity component - ()eff effective - ()l laminar - ()t turbulent - mean over the time  相似文献   

3.
A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially skewed during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.List of symbols  A  Deformation tensor - Dt, Df  Reactor and injector diameter - Lx, Ly, Lz  Dimensions of the 3D-LIF measurement volume - Nx, Ny, Nz  Number of data samples per measurement volume - Rem  Reynolds number based on mean velocity - Sc  Schmidt number - f  Focal length - fc,lens, fc,array  Cut-off frequency for camera lens and sensor array - f, f  Marginal probability density function for and - f  Joint probability density function of and -  Temporal separation of the 2D data planes -  Temporal resolution of the measurement volume -  Spatial resolution of the measurement volume - ,  Deformation angle and deformation, where =tan -  Fluid energy dissipation rate - ,  Strain limited vorticity and scalar diffusion layers -  Scalar concentration - , B Kolmogorov and Batchelor length scale - ,  Spherical angles of the scalar gradient vector, -  Kinematic viscosity - e–2 Half-thickness (1/e2) of the laser sheet - , a Kolmogorov and Kolmogorov advection time scales -  Scalar energy dissipation rate -  Scalar diffusivity - 2D, 3D Two- and three-dimensional - DNS Direct numerical simulation - LIF Laser-induced fluorescence - SED Scalar energy dissipation rate - TR Tubular reactor
E. Van VlietEmail:
  相似文献   

4.
By definition, a homogeneous isotropic compressible Hadamard material has the property that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as regards the wave, homogeneous means that the direction of propagation of the wave is parallel to the direction of eventual attenuation; and longitudinal means that the wave is linearly polarized in a direction parallel to the direction of propagation. In other words, the displacement is of the form u = ncos k(n · xct), where n is a real vector. It is seen that the Hadamard material is the most general one for which a longitudinal inhomogeneous plane wave may also propagate in any direction of a predeformed body. Here, inhomogeneous means that the wave is attenuated, in a direction distinct from the direction of propagation; and longitudinal means that the wave is elliptically polarized in the plane containing these two directions, and that the ellipse of polarization is similar and similarly situated to the ellipse for which the real and imaginary parts of the complex wave vector are conjugate semi-diameters. In other words, the displacement is of the form u = {S exp i(S · xct)}, where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It is the most general homogeneous isotropic compressible material which allows the propagation of infinitesimal longitudinal inhomogeneous plane circularly polarized waves for all choices of the isotropic directional bivector. Finally, the most general forms of response functions are found for homogeneously deformed isotropic elastic materials in which longitudinal inhomogeneous plane waves may propagate with a circular polarization in each of the two planes of central circular section of the n -ellipsoid, where is the left Cauchy-Green strain tensor corresponding to the primary pure homogeneous deformation.  相似文献   

5.
The modern theory of masonry structures has been set up on the hypothesis of no-tension behaviour, with the aim of offering a reference model, independent of materials and building techniques employed. This hypothesis gives rise to inequalities which have to be satisfied by the stress tensor components and, as a dual aspect, to the kinematic behaviour characteristics of media which can be classified as lying between solids and fluids: the structure of the masonry material consists of particles reacting elastically only when in contact. An examination of the plane-stress problem leads us to define, within the prescribed domain under admissible loads, three different subdomains with null, regular, or non-regular principal stress tensors, respectively. As the boundaries of such subdomains are not known a priori, the problem can be classified as a free boundary value problem. The analysis concerns mainly the subdomains where the stress tensor is non-regular; and a non-regularity condition det =0 is added to the equilibrium equations. This condition makes the stress problem isostatic and leads to a violation of Saint-Venant's compliance conditions on strains. Hence there is a need to introduce a strain tensor, not related to the stress tensor, which can be decomposed into an extensional component and a shearing component; we prove that such strains, of the class c, are similar to those of the theory of plastic flow. From the point of view of computational analysis the anelastic strains are considered as given distortions; they are computed by means of the Haar-Kármán principle, modified for computational purposes by an idea of Prager and Hodge.
Sommario La moderna teoria delle strutture murarie, fondata sulla rigorosa non reagenza a trazione del materiale, ha lo scopo di fornire un modello di riferimento indipendente sia dalle caratteristiche del materiale sia dalle techniche costruttive impiegate. L'ipotesi di non reagenza a trazione si traduce in disuguaglianze che le componenti del tensore di stress devono verificare; dualmente il comportamento caratteristico cinematico può esser classificato di confine, come del resto la stessa statica, tra solidi e fluidi: la struttura ipotizzata del materiale muratura consiste di particelle che reagiscono solo se sono in contatto. L'esame del problema piano porta a definire all'interno del dominio di definizione tre differenti tipi di sub-regioni in cui lo stress è nullo, canonico, o singolare. Poiché le frontiere di queste sub-regioni non sono note a priori il problema può anche essere classificato di frontiera libera. L'analisi concerne fondamentalmente la sub-regione in cui il tensore è non regolare, perché deve verificare anche la condizione det =0. Ciò rende isostatico il problema e conduce anche alla violazione della condizione di integrabilità delle deformazioni. Questo passaggio può essere superato introducendo un tensore di deformazioni a tensioni nulle che si può decomporre in una componente estensionale ed in una componente di scorrimento; si dimostra che queste deformazioni sono equivalenti a quelle che intervengono nella Teoria del flusso plastico. Dal punto di vista computazionale le deformazioni anelastiche sono considerate come distorsioni impresse determinate attraverso il principio di Haar-Kármán modificato, per le techniche computazionali, su idee di Prager e Hodge.
  相似文献   

6.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

7.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

8.
Übersicht Die Fehlervorhersage eines einachsigen Fadenverbundwerkstoffes mit metallischer Matrix erfordert die Kenntnis des nichtlinearen elastisch-plastischen Verhaltens in mikroskopischer Abmessung. Als Fallstudie wurde ein spezieller Verbundwerkstoff mit einem FEM-Programm untersucht. Im plastischen Bereich wurde das klassische, v. Mises Potential' mit dem neuen Übergangsfließpotential unter Berücksichtigung der plastischen Volumendehnung verglichen. Unter transversaler Normalbelastung zeigte der Verbund deutliche Unterschiede in der Zunahme und der Ausdehnung der lokalen plastischen Zonen. Alle kritischen Verformungsstadien wurden von dem Übergangsfließpotential bei geringerer Belastung erreicht.
Numerical investigation of the elastic-plastic behaviour of a fibre-reinforced composite with a metallic matrix
Summary Failure prediction of unidirectional fibre-reinforced composite with a metallic matrix needs knowledge about the nonlinear elastic-plastic behaviour in a microscopic scale. A specific composite was investigated using a FEM-program as a case study. In the plastic range the classical v. Mises Potential was compared with the new Transition Flow Potential, taking into account the plastic volume dilatation. Subjected to transverse normal loading the composite showed evident differences in the increase and the spread of locally plastic regions. All critical deformation states were reached by the Transition Flow Potential at lower loading.
  相似文献   

9.
Inverse models to determine the permeability are generally based on existing forward models for the pressure. The permeabilities are adapted in such a way that the calculated pressures match the specified pressures in a number of points. To assimilate a priori knowledge about the flux, we introduce the flux assimilation method, which is based on the vector potential–pressure formulation of Darcy's law. Thanks to an unconventional discretization technique – the edge-based face element method – not only the specified pressures, but also specified information about the flux density can easily be assimilated. A relatively simple, but insightful analytical example illustrates the potential of this method.  相似文献   

10.
A study is made of steady two-dimensional seepage in a porous massif composed by a double-periodic system of white and black chequers of arbitrary conductivity. Rigorous matching of Darcy's flows in zones of different conductivity is accomplished. Using the methods of complex analysis, explicit formulae for specific discharge are derived. Stream lines, travel times, and effective conductivity are evaluated. Deflection of marked particles from the natural direction of imposed gradient and stretching of prescribed composition of these particles enables the elucidation of the phenomena of transversal and longitudinal dispersion. A model of pure advection is related with the classical one-dimensional vective dispersion equation by selection of dispersivity which minimizes the difference between the breakthrough curves calculated from the two models.  相似文献   

11.
Knowles' representation theorem for harmonically time-dependent free surface waves on a homogeneous, isotropic elastic half-space is extended to include harmonically time-dependent free processes for thermoelastic surface waves in generalized thermoelasticity of Lord and Shulman and of Green and Lindsay.r , , r , , .This work was done when author was unemployed.  相似文献   

12.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

13.
Übersicht Ausgehend von bekannten Fundamentallösungen für Platten bzw. Scheiben wird die Erstellung singulärer Ansatzfunktionen gezeigt, wie sie für finite Näherungsverfahren benötigt werden, die von den Funktionalen der totalen Energie bzw. der komplementären Energie ausgehen. Das Vorgehen wird eingehend an Kreiszylinderschalen erläutert.
Summary Starting from known fundamental solutions of plates the construction of singular basic estimate functions is shown. These are necessary in finite approximation methods basing on the functionals of total energy or complementary energy. The proceeding is explained in detail in a cylindrical shell analysis.
  相似文献   

14.
In the present paper magnetohydrodynamic models are employed to investigate the stability of an inhomogeneous magnetic plasma with respect to perturbations in which the electric field may be regarded as a potential field (rot E 0). A hydrodynamic model, actually an extension of the well-known Chew-Goldberg er-Low model [1], is used to investigate motions transverse to a strong magnetic field in a collisionless plasma. The total viscous stress tensor is given; this includes, together with magnetic viscosity, the so-called inertial viscosity.Ordinary two-fluid hydrodynamics is used in the case of strong collisions=. It is shown that the collisional viscosity leads to flute-type instability in the case when, collisions being neglected, the flute mode is stabilized by a finite Larmor radius. A treatment is also given of the case when epithermal high-frequency oscillations (not leading immediately to anomalous diffusion) cause instability in the low-frequency (drift) oscillations in a manner similar to the collisional electron viscosity, leading to anomalous diffusion.Notation f particle distribution function - E electric field component - H0 magnetic field - density - V particle velocity - e charge - m, M electron and ion mass - i, e ion and electron cyclotron frequencies - viscous stress tensor - P pressure - ri Larmor radius - P pressure tensor - t time - frequency - T temperature - collision frequency - collision time - j current density - i, e ion and electron drift frequencies - kx, ky, kz wave-vector components - n0 particle density - g acceleration due to gravity. The authors are grateful to A. A. Galeev for valuable discussion.  相似文献   

15.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

16.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

17.
A Capillary Microstructure of the Wetting Front   总被引:3,自引:0,他引:3  
This article reports the experimental results of a study of the wetting-front microscale structure formed only by capillary forces in homogeneous and random etched glass capillary models. In the homogeneous model, water propagates through the capillary system, evenly filling the capillaries across the direction of flow. Air is trapped by the pinch-off mechanism inside the pore bodies in the form of individual bubbles. The experiments specified three consecutive steps of the pinch-off mechanism, film flow, snap-off, and interface movement. In the random model, both the bypass and pinch-off, forming bypass/cut-off mechanism, create residual air structure. Bypass traps air inside large capillary-pore aggregates which are bounded by small-diameter capillaries in where pinch-off traps air in the adjacent pores. An analysis of the residual air distribution versus depth below the surface in the homogeneous and random micromodels made it possible to identify three successive zones, namely a transition zone, a transmission zone, and a wetting-and-front zone. In the transition zone, the residual air content increases with depth from zero to the constant value in the transmission zone where it remains practically constant. The capillary processes within the wetting-and-front combined zone govern air replacement with wetting and formation of the transmission zone.  相似文献   

18.
We study a model Boltzmann equation closely related to the BGK equation using a steepest-descent method in the Wasserstein metric, and prove global existence of energy-and momentum-conserving solutions. We also show that the solutions converge to the manifold of local Maxwellians in the large-time limit, and obtain other information on the behavior of the solutions. We show how the Wasserstein metric is natural for this problem because it is adapted to the study of both the free streaming and the collisions.  相似文献   

19.
In this paper a constitutive equation for masonry arches is defined and its main properties are proven; in this equation to each pair of generalized strains (, ), with the extensional strain and the curvature change of the centre line, is assigned the pair of generalized internal forces (N,M), where N is the normal force and M the bending moment. Subsequently, the collapse of masonry arches is characterized and the static and kinematic theorems proven. Finally, a method for determining the collapse load in the case of circular arches subjected to their own weight and a vertical point load applied at a point of the extrados is presented. The results obtained, of interest in some applications, are summarized in a series of graphs.  相似文献   

20.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号