首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the weighted extended basis splines approach in the finite element method is applied to the electrostatic, electromagnetic wave and bioheat problems for inhomogeneous boundary conditions and radially symmetric structures. This new method, which does not need mesh generation, overcomes some of the drawbacks of using meshes and piecewise-uniform or linear trial functions. Two-dimensional radially symmetric electrostatic and electromagnetic wave equations are evaluated. We also attempt to propose a three-dimensional radially symmetric unexposed human eye model for simulating changes in corneal temperature using these new finite elements in conjunction with linear, quadratic and cubic b-splines. Our findings indicate that weighted extended basis spline solutions improve the standard finite element method. The simulation results which are verified using the values reported in the literature, point out to better efficiency in terms of the accuracy level.  相似文献   

2.
To solve boundary value problems for ordinary differential equations of the second and fourth orders, we suggest a method for constructing a sequence of adaptively refined and coarsened meshes in a version of the finite element method with piecewise cubic Hermite basis functions. The construction of the meshes is based on C-norm estimates of the variation in the approximate solution or in the value of the functional to be minimized under the addition of a test point to a mesh interval or the deletion of a point from the current mesh. We present the results of numerical experiments used to assess the efficiency of the method. By way of example, problems whose solutions have singularities of the boundary layer type were used in these experiments. We carry out a comparison with a version of the method based on the uniform mesh refinement.  相似文献   

3.
Andreas Schröder 《PAMM》2008,8(1):10053-10056
In this work, we combine an hp–adaptive strategy with a posteriori error estimates for variational inequalities, which are given by contact problems. The a posteriori error estimates are obtained using a general approach based on the saddle point formulation of contact problems and making use of a yposteriori error estimates for variational equations. Error estimates are presented for obstacle problems and Signorini problems with friction. Numerical experiments confirm the reliability of the error estimates for finite elements of higher order. The use of the hp–adaptive strategy leads to meshes with the same characteristics as geometric meshes and to exponential convergence. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Summary In this first of two papers, computable a posteriori estimates of the space discretization error in the finite element method of lines solution of parabolic equations are analyzed for time-independent space meshes. The effectiveness of the error estimator is related to conditions on the solution regularity, mesh family type, and asymptotic range for the mesh size. For clarity the results are limited to a model problem in which piecewise linear elements in one space dimension are used. The results extend straight-forwardly to systems of equations and higher order elements in one space dimension, while the higher dimensional case requires additional considerations. The theory presented here provides the basis for the analysis and adaptive construction of time-dependent space meshes, which is the subject of the second paper. Computational results show that the approach is practically very effective and suggest that it can be used for solving more general problems.The work was partially supported by ONR Contract N00014-77-C-0623  相似文献   

5.
In this paper, we consider solving second-order elliptic problems with rapidly oscillating coefficients. Under the assumption that the oscillating coefficients are periodic, on the basis of classical homogenization theory, we present a finite element method whose key is to combine a numerical approximation of the 1-order approximate solution of those equations and a numerical approximation of the classical boundary corrector of those equations from different meshes exploiting the need for different levels of resolution. Numerical experiments are included to illustrate the competitive behavior of the proposed finite element method.  相似文献   

6.
In this article we address the problem of the existence of superconvergence points for finite element solutions of systems of linear elliptic equations. Our approach is quite different from all other studies of superconvergence. We prove that the existence of superconvergence points can be guaranteed by a numerical algorithm, which employs a finite number of operations (provided that there is no roundoff-error). By employing this approach, we can reproduce all known results on superconvergence of finite element solutions for linear elliptic problems and we can obtain many new results. Here, in particular, we address the problem of the superconvergence points for the gradient of finite element solutions of Laplace's and Poisson's equations and we show that the sets of superconvergence points are very different for these two cases. We also study the superconvergence of the components of the gradient of the displacement, the strain and stress for finite element solutions of the equations of elasticity. For Laplace's and Poisson's equations (resp. the equations of elasticity), we consider meshes of triangular as well as square elements of degree p, 1 ? p ? 7 (resp. 1 ? p ? 4). For the meshes of triangular elements we investigate the effect of the geometry of the mesh by considering four mesh patterns that typically occur in practical meshes, while in the case of square elements, we study the effect of the element type (tensor-product, serendipity, or other). © 1996 John Wiley & Sons, Inc.  相似文献   

7.
We consider the convergence theory of adaptive multigrid methods for second-order elliptic problems and Maxwell's equations. The multigrid algorithm only performs pointwise Gauss-Seidel relaxations on new degrees of freedom and their "immediate" neighbors. In the context of lowest order conforming finite element approximations, we present a unified proof for the convergence of adaptive multigrid V-cycle algorithms. The theory applies to any hierarchical tetrahedral meshes with uniformly bounded shape-regularity measures. The convergence rates for both problems are uniform with respect to the number of mesh levels and the number of degrees of freedom. We demonstrate our convergence theory by two numerical experiments.  相似文献   

8.
We investigate some simple finite element discretizations for the axisymmetric Laplace equation and the azimuthal component of the axisymmetric Maxwell equations as well as multigrid algorithms for these discretizations. Our analysis is targeted at simple model problems and our main result is that the standard V-cycle with point smoothing converges at a rate independent of the number of unknowns. This is contrary to suggestions in the existing literature that line relaxations and semicoarsening are needed in multigrid algorithms to overcome difficulties caused by the singularities in the axisymmetric Maxwell problems. Our multigrid analysis proceeds by applying the well known regularity based multigrid theory. In order to apply this theory, we prove regularity results for the axisymmetric Laplace and Maxwell equations in certain weighted Sobolev spaces. These, together with some new finite element error estimates in certain weighted Sobolev norms, are the main ingredients of our analysis.

  相似文献   


9.
Interior estimates are proved in the L norm for stable finite element discretizations of the Stokes equations on translation invariant meshes. These estimates yield information about the quality of the finite element solution in subdomains a positive distance from the boundary. While they have been established for second-order elliptic problems, these interior, or local, maximum norm estimates for the Stokes equations are new. By applying finite differenciation methods on a translation invariant mesh, we obtain optimal convergence rates in the mesh size h in the maximum norm. These results can be used for analyzing superconvergence in finite element methods for the Stokes equations.  相似文献   

10.
1.lnthestudyoftheprobleminphysics,mechanics,chemicalreactions,biologyandotherpracticalsciences,thelinearandnonlinearparabolicequationsandsystemsareappearedveryfrequently.Manynumericalinvestigationsinscientificandengineeringproblemsespeciallyinthelargescalecomputationalproblemsoftencontainthenumer-icalsolutionsofparabolicequationsandsystems.ThemethodwithunequalmeshstePSisnotavoidableinthesecomputations.Manyunexpectedandselfcontradictoryphe-nomenonraisingfromtheuseofunequalmeshstepscallourgreata…  相似文献   

11.
The node-based smoothed radial point interpolation method for solving the transient responses of magneto-electro-elastic structures in thermal environment is proposed. Considering the coupling relations between the elasticity, magnetism, electricity and heat, the generalized displacement (displacement, electric potential and magnetic potential) is calculated using the modified Newmark method. G space theory and the weakened weak formulation are applied to derive the equations of node-based smoothed radial point interpolation method for the magneto-electro-thermo-elastic multi-physics coupling problems. We use triangular background meshes as they could be generated more easily for structures with complex geometry. In some cases, they could even be created automatically. Detailed numerical study has shown that node-based smoothed radial point interpolation method not only successfully overcomes the overly-stiff behavior in the FEM and provides more accurate results, but also works well with distorted meshes. Therefore, the node-based smoothed radial point interpolation method could be adopted to solve the magneto-electro-thermo-elastic multi-physics coupling problems in practical engineering.  相似文献   

12.
该文利用锥不动点理论获得了一类离散的周期边值问题的单个和多个正解存在的理论, 进而获得了带有周期边值条件的非线性差分方程在离散片段上的新结果.  相似文献   

13.
In this paper, based on some mesh-dependent estimates on the extreme eigenvalues of a general finite element system defined on a simplicial mesh, novel and sharp bounds on the permissible time step size are derived for the mass lumping finite element approximations of parabolic equations. The bounds are dependent not only on the mesh size but also on the mesh shape. These results provide guidance to the stability of numerical solutions of parabolic problems in relation to the unstructured geometric meshing. Numerical experiments on both uniform meshes and adaptive meshes are presented to validate the theoretical analysis.  相似文献   

14.
In this paper, based on some mesh-dependent estimates on the extreme eigenvalues of a general finite element system defined on a simplicial mesh, novel and sharp bounds on the permissible time step size are derived for the mass lumping finite element approximations of parabolic equations. The bounds are dependent not only on the mesh size but also on the mesh shape. These results provide guidance to the stability of numerical solutions of parabolic problems in relation to the unstructured geometric meshing. Numerical experiments on both uniform meshes and adaptive meshes are presented to validate the theoretical analysis.  相似文献   

15.
有限元超收敛新论   总被引:1,自引:0,他引:1  
朱起定  赵庆华 《数学进展》2004,33(4):453-466
本文从三个方面讨论二阶椭圆问题有限元超收敛.1.一致网格上的新超收敛结果.利用新的“投影型插值”,我们解决了高次三角形元的超收敛问题.2.一般网格的超收敛性.利用局部插值处理和局部磨光处理我们获得了整体超收敛性结果.3.关于当前的两种超收敛技巧.Cornell学派利用一个精致的内估计和网格的点对称性,获得了一个“普遍”的结果,中国学派利用两个基本估计和离散Green函数理论获得了令人满意的结果,两者均很复杂.本文综合了两个学派的方法,简洁地证得上述普遍结果.  相似文献   

16.
We develop a local flux mimetic finite difference method for second order elliptic equations with full tensor coefficients on polyhedral meshes. To approximate the velocity (vector variable), the method uses two degrees of freedom per element edge in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions. To approximate the pressure (scalar variable), the method uses one degree of freedom per element. A specially chosen quadrature rule for the L 2-product of vector-functions allows for a local flux elimination and reduction of the method to a cell-centered finite difference scheme for the pressure unknowns. Under certain assumptions, first-order convergence is proved for both variables and second-order convergence is proved for the pressure. The assumptions are verified on simplicial meshes for a particular quadrature rule that leads to a symmetric method. For general polyhedral meshes, non-symmetric methods are constructed based on quadrature rules that are shown to satisfy some of the assumptions. Numerical results confirm the theory.  相似文献   

17.
In this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators with isolated inverse square potentials and of solutions to equations involving such operators. It is known in this situation that the finite element method performs poorly with standard meshes. We construct an alternative class of graded meshes, and prove and numerically test optimal approximation results for the finite element method using these meshes. Our numerical tests are in good agreement with our theoretical results.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1130–1151, 2014  相似文献   

18.
Both linear and nonlinear singularly perturbed two point boundary value problems are examined in this paper. In both cases, the problems have a boundary turning point and are of convection-diffusion type. Parameter-uniform numerical methods composed of monotone finite difference operators and piecewise-uniform Shishkin meshes, are constructed and analyzed for both the linear and the nonlinear class of problems. Numerical results are presented to illustrate the theoretical parameter-uniform error bounds established.  相似文献   

19.
In the past decades, the finite difference methods for space fractional operators develop rapidly; to the best of our knowledge, all the existing finite difference schemes, including the first and high order ones, just work on uniform meshes. The nonlocal property of space fractional operator makes it difficult to design the finite difference scheme on non-uniform meshes. This paper provides a basic strategy to derive the first and high order discretization schemes on non-uniform meshes for fractional operators. And the obtained first and second schemes on non-uniform meshes are used to solve space fractional diffusion equations. The error estimates and stability analysis are detailedly performed; and extensive numerical experiments confirm the theoretical analysis or verify the convergence orders.  相似文献   

20.
The main goal of this paper is to present recovery type a posteriori error estimators and superconvergence for the nonconforming finite element eigenvalue approximation of self-adjoint elliptic equations by projection methods. Based on the superconvergence results of nonconforming finite element for the eigenfunction we derive superconvergence and recovery type a posteriori error estimates of the eigenvalue. The results are based on some regularity assumption for the elliptic problem and are applicable to the lowest order nonconforming finite element approximations of self-adjoint elliptic eigenvalue problems with quasi-regular partitions. Therefore, the results of this paper can be employed to provide useful a posteriori error estimators in practical computing under unstructured meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号