首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis and properties of clay-based superabsorbent composite   总被引:2,自引:0,他引:2  
A novel superabsorbent composites based on acrylic acid, acrylamide, and inorganic clay mineral-attapulgite were synthesized through a solution polymerization to improve water and saline absorbencies. The superabsorbent composite was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effects of saline solutions, amount of initiator, crosslinker and attapulgite on the water absorbency of superabsorbent composites were investigated. The water retention test of superabsorbent composites were also carried out. The superabsorbent composite exhibited improved water and saline absorbencies compared with that of crosslinked poly(acrylic acid-co-acrylamide) superabsorbent polymer. The water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% reaches more than 1400 g H2O/g and 110 g H2O/g in distilled water and 0.9% NaCl solution, respectively.  相似文献   

2.
A novel kind of salt-resistant superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and attapulgite (APT) was prepared by free-radical aqueous polymerization, using N,N′-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FTIR and XRD. The effects of acidified APT (H+-APT), organo-APT (HDTMABr-APT) and the content of APT in the superabsorbent composite on the water absorbency and the initial swelling rate for the superabsorbent composite in distilled water and in various saline solutions were studied. The effects of incorporated HDTMABr-APT and H+-APT on the reswelling ability of the superabsorbent composites were investigated. The results indicate that the incorporation of APT had remarkable influence on the improvement of water absorbency and swelling rate of the composites. Comparing with the composite doped with H+-APT, the water absorbency for the composite doped with 10 wt% HDTMABr-APT was enhanced from 2140 g g−1 to 2800 g g−1 in distilled water and from 100 g g−1 to 121 g g−1 in 0.9 wt% NaCl solution, respectively. The water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, the reswelling ability of the superabsorbent composites is also improved evidently by adding a small amount of HDTMABr-APT into the composite, comparing with that of incorporated with H+-APT.  相似文献   

3.
A series of superabsorbent composites, polyacrylamide/attapulgite (PAMA), were prepared from acrylamide (AM) and attapulgite micropowder in aqueous solution, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator and then saponified with sodium hydroxide solution. This paper focuses on swelling behaviors of the PAMA superabsorbent composites in various saline solutions. The results indicate that saline solutions can weaken the swelling abilities of the PAMA compsites greatly. Water absorbency of the PAMA composites with 20 and 40 wt% attapulgite in aqueous chloride salt solutions has the following order: Li+ = Na+ = K+, Mg2+ > Ca2+ = Ba2+ all through the range of concentration investigated. However, swelling properties of the composites are complicated in CuCl2(aq), AlCl3(aq) and FeCl3(aq) solutions and are related to saline solutions concentration. The deswelling behavior of PAMA composites is more obvious in univalent chloride salt solutions than in divalent and trivalent ones. The influence of kind and valence of anions on swelling ability of the composites is limited and almost the same. Moreover, reswelling capability, practical water retention ability in sand soil of the composites and the effect of pH on water absorbency of the PAMA composites were investigated. The PAMA composite shows good water retention and reswelling ability in sand soil, and may be used as a recyclable water‐managing material for the renewal of arid and desert environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A novel kind of superabsorbent composite, polyacrylamide/organo-attapulgite, from acrylamide (AM) and attapulgite (APT) was prepared by aqueous polymerization, using N,N′-methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. APT was organified with five different degree of hexadecyltrimethyl ammonium bromide (HDTMABr), and the organification degree of APT was proved by FTIR, TGA and XRD. The effects of organification degree of APT on water absorbency and swelling rate of the superabsorbent composite in distilled water and in various saline solutions were investigated in this study. The effect of organification degree on reswelling ability of the superabsorbent composites was also investigated. The results indicate that the organification degree of APT had remarkable influence on swelling behaviors of the superabsorbent composites. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT is 8.02 wt.%.  相似文献   

5.
A novel multifunctional superabsorbent composite from acrylic acid (AA), acrylamide (AM), sodium humate (SH) and organo‐attapulgite (organo‐APT), PAA‐AM/SH/organo‐APT, was synthesized by aqueous solution polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FT‐IR. The effects of organo‐APT (HDTMA‐APT) content in the superabsorbent composite and organification degree of it on water absorbency of the superabsorbent composite were studied. The effects of incorporated HDTMA‐APT on swelling rate, water absorbency in various saline solutions and reswelling capability of the superabsorbent composite were also investigated. The results indicate that organification of APT had a remarkable influence on swelling behaviors of the superabsorbent composites. Comparing with the composite doped with APT, water absorbency for the composite incorporated with 10 wt% HDTMA‐APT was enhanced from 996 to 1282 g g?1 in distilled water and from 63 to 68 g g?1 in 0.9 wt% NaCl solution, respectively. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT was 8.02 wt%. Water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, swelling rate and reswelling capability of the superabsorbent composite were also improved by introducing HDTMA‐APT into the composite compared with that of incorporating APT. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Starch and sodium humate were utilized as raw material for synthesizing starch‐g‐poly(acrylic acid)/sodium humate (St‐g‐PAA/SH) superabsorbent by graft copolymerization reaction of starch (St) and acrylic acid (AA) in the presence of sodium humate (SH) in aqueous solution. The effect of weight ratio of AA to St, initial monomer concentration, neutralization degree of AA, amount of crosslinker, initiator and SH on water absorbency of the superabsorbent were studied. The swelling rate and swelling behavior in NaCl solution as well as reswelling ability of the superabsorbent were systematically investigated. The results showed that the superabsorbent synthesized under optimal conditions with SH content of 7.7 wt% and St content of 11.5 wt% exhibits water absorbency of 1100 g/g in distilled water and 86 g/g in 0.9 wt% NaCl solution, respectively. Introducing SH into the St‐g‐PAA polymeric network can improved the swelling rate and reswelling capability of the superabsorbent. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A novel poly(acrylic acid)/sodium humate superabsorbent composite was synthesized by aqueous solution polymerization of acrylic acid using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator in the presence of sodium humate. The effects on water absorbency such as initial monomer concentration, degree of neutralization of acrylic acid, amount of crosslinker, initiator and sodium humate, etc. were investigated. The water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with a sodium humate content of 20% exhibited an absorption of 1268 g H2O/g sample and 93 g H2O/g sample in distilled water and in 0.9 wt% NaCl solution, respectively. Swelling rate and water retention tests were also carried out. The results show that sodium humate, as a kind of functional filler, can enhance comprehensive properties of superabsorbent composite and reduce the product cost significantly. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Acrylic acid (AA)–acrylamide (AM) based superabsorbent polymers (SAP) were synthesized by inverse suspension polymerization using potassium‐persulfate as the initiator, N,N′‐methylene bisacrylamide (BIS) as a crosslinker, sorbitan monostearate (Span 60) as the dispersant, cyclohexane as the solvent, and bis(methacryloylamino)‐azobenzene as the hydrophobic surface crosslinker. The influence of the polymerization parameters on the properties of the SAPs, water absorption (Q), morphology of the SAPs, swelling kinetics, salt resistance, and the reversibility of water absorption were investigated. The prepared SAPs have excellent water absorption, rapid water uptake, and good resistance to NaCl solutions. Furthermore, they show better reversible water uptake than the previously reported SAPs. The average water absorbency is 2800 g/g and 181 g/g of liquid absorbance in 0.025M NaCl solution. The initial water uptake rate is 1357 g/g/min and the reversibility of water absorption is 200 g/g in the repeated fourth cycle. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1357–1364, 2008  相似文献   

9.
A novel cellulose acetate‐coated compound fertilizer with controlled‐release and water‐retention (CAFCW) was prepared, which possessed the three‐layer structure. Its core was water‐soluble compound fertilizer granular, the inner coating was cellulose acetate (CA), and the outer coating was poly(acrylic acid‐co‐acrylamide)/unexpanded vermiculite (P(AA‐co‐AM)/UVMT) superabsorbent composite. The effects of the amount of acrylamide, crosslinker, initiator, degree of neutralization of acrylic acid (AA), and unexpanded vermiculite concentration on water absorbency were investigated and optimized. The water absorbency of CAFCW was 72 times its own weight if it was allowed to swell in tap water at room temperature for 90 min. Element analysis and atomic absorption spectrophotometer results showed that the product contained 11% nitrogen, 6% phosphorus (shown by P2O5), 9% potassium (shown by K2O), 1% calcium (shown by CaO), and 0.4% magnesium (shown by MgO). Swelling rate, slow‐release, and water‐retention properties of CAFCW were also investigated. This product with good controlled‐release and water‐retention capacity, being degradable in soil and environmentally friendly, could be especially useful in agricultural and horticultural applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A Na3V2(PO4)3 sample coated uniformly with a layer of 6 nm carbon has been successfully synthesized by a one-step solid state reaction. This material shows two flat voltage plateaus at 3.4 V vs. Na+/Na and 1.63 V vs. Na+/Na in a nonaqueous sodium cell. When the Na3V2(PO4)3/C sample is tested as a cathode in a voltage range of 2.7-3.8 V vs. Na+/Na, its initial charge and discharge capacities are 98.6 and 93 mAh/g. The capacity retention of 99% can be achieved after 10 cycles. The electrode shows good cycle performance and moderate rate performance. When it is tested as an anode in a voltage range of 1.0-3.0 V vs. Na+/Na, the initial reversible capacity is 66.3 mAh/g and the capacity of 59 mAh/g can be maintained after 50 cycles. These preliminary results indicate that Na3V2(PO4)3/C is a new promising material for sodium ion batteries.  相似文献   

11.
Electrochemical measurements are done on (water + NaBr + K3PO4 + glycine) mixtures at T (298.15 and 308.15) K by using (Na+ glass) and (Br solid-state) ion selective electrodes. The mean ionic activity coefficients of NaBr are determined at five NaBr molalities (0.1, 0.3, 0.5, 0.7, and 1) in the above mixtures. The activity coefficients of glycine are evaluated from mean ionic activity coefficients of sodium bromide. The ratio of mean ionic activity coefficient of NaBr in the (water + NaBr + K3PO4 + glycine) mixtures to the mean ionic activity coefficients of NaBr at the same molalities in the (H2O + NaBr) mixtures are correlated by using a new expression.  相似文献   

12.
A combined osmotic pressure and cake filtration model for crossflow nanofiltration of natural organic matter (NOM) was developed and successfully used to determine model parameters (i.e. permeability reduction factor (η) and specific cake resistance (αcake)) for salt concentrations, NOM concentrations, and ionic strength of salt species (Na+ and Ca++). In the absence of NOM, with increasing salt concentration from 0.004 to 0.1 M, permeability reduction factor (η)) decreased from 0.99 to 0.72 and 0.94 to 0.44 for monovalent cation (Na+) and divalent cation (Ca++), respectively. This reduced membrane permeability was due to salt concentrations and salt species. In the presence of NOM, specific cake resistance tended to increase with increasing NOM concentration and ionic strength in the range of 0.85 × 1015–3.66 × 1015 m kg−1. Solutions containing divalent cation exhibited higher normalized flux decline (Jv/Jvo = 0.685–0.632) and specific cake resistance (αcake = 2.89 × 1015–6.24 × 1015 m kg−1) than those containing monovalent cation, indicating a highly compacted NOM accumulation, thus increased permeate flow resistance during NF filtration experiments. After membrane cleaning, divalent cation exhibited lower water flux recovery than monovalent cation, suggesting higher non-recoverable (Rnon-rec) resistance than monovalent cation.  相似文献   

13.
A series of novel poly(acrylic acid)/coco peat (PAA/CP) superabsorbent composites were prepared via the ultraviolet irradiation copolymerization of acrylic acid monomer (PAA) and coco peat cellulose (CP) in the presence of the cross‐linker trimethylolpropane trimaleate. The physico‐chemical structures of obtained PAA/CP were characterized by Fourier transform infrared spectroscopy, thermogravimetry/derivative thermogravimetry, X‐ray diffraction, and scanning electron microscopy, respectively. The critical parameters of affecting the water absorbency of PAA/CP, including the cross‐linker level, amount of CP and reaction time, were studied in detailed. The experimental results showed that the PAA/CP samples exhibited the maximum swelling value of 523.09 g/g in distilled water and 40.52 g/g in 0.9 wt % NaCl solution. The swelling behaviors of PAA/CP were significantly relied on the concentration of salt solution and the pH of external solution. The effect of ions species on the swelling performance was in the order: Na+ > Ca2+ > Fe3+ , and in pH 2.2 and 7.2 aqueous solutions PAA/CP composites displayed better pH‐responsiveness and reversible on‐off switching characteristics. Urea, as an agrochemical model, was loaded into PAA/CP substrate to supply with nitrogen nutrient. The test of their loading and releasing diffusion performance of urea suggested that the urea loading percentage of PAA/CP was remarkably dependent on the concentration of aqueous urea solutions and the release of urea from loaded PAA/CP samples in water followed a non‐Fickian mechanism. Owing to their considerable good water absorption capacity, slow urea release, economical and environment‐friendly merits, PAA/CP composites could be exploited for the agriculture applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A novel diatomite composite superabsorbent was synthesized by solution polymerization of partially neutralized acrylic acid and diatomite, using N,N′-methylenebisacrylamide as a crosslinking agent and hydrogen peroxide and L -ascorbic acid as a redox initial system. The influences of some reaction conditions, such as diatomite content, neutralization degree of acrylic acid, amount of initiator, amount of crosslinking agent, monomer concentration, and the reaction temperature on swelling characteristic were investigated. The water absorbency of the sample prepared at optimum conditions was 99 g/g in 0.9 wt% NaCl solution. The results of swelling rate measurement showed that diatomite composite superabsorbent had better swelling rate than that of poly(sodium acrylate) prepared in the same conditions. Other properties, i.e. water retention, reswelling ability and resistance to salt, were also examined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

A novel hydrolysis-resistant superabsorbent composite was prepared via the solution polymerization based on acrylic acid (AA) and sodium bentonite (SBT) as monomers, tetraallylammonium bromine (TAAB) as crosslinker and ammonium persulfate (APS) as initiator. The mechanism of polymerization and the structure of the superabsorbent polymer (SAP) were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-ray), and scanning electron microscopy (SEM). The reaction conditions such as different mass ratios of APS to AA, TAAB to AA, SBT to AA, neutralization degree of AA were optimized by orthogonal experiment, and the influence of each reaction condition on the capacity of water absorption at 150?°C was investigated via single-factor controlled experiment. The hydrolysis resistance and swelling kinetics of the SAP were studied in different solutions at 150?°C. Compared to traditional SAPs, the SAP synthesized with TAAB as crosslinker performed a more excellent hydrolysis resistance and water absorbency capacity at high temperatures. The water absorbency in distilled water or 0.1?mol L?1 NaCl solution could reach 392.6 and 145.2?g g?1at 150?°C, respectively. The SAP maintaining high swelling capacity in the pH range of 5–9 indicated its wide application values in the acidic or alkaline environment at high temperature. In addition, the SAP exhibited good reusability which could still retain about 73% of its initial water absorbency after reswelling six times at 150?°C.  相似文献   

16.
A novel biopolymer-based superabsorbent hydrogel was synthesized through chemically crosslinking graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC), in the presence of a crosslinking agent and a free radical initiator. A proposed mechanism for κC-g-polyacrylic acid was suggested and the affecting variables onto graft polymerization (i.e. the crosslinker, the monomer and the initiator concentration, the neutralization percent and reaction temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Maximum water absorbency of the optimized final product was found to be 789 g/g. The swelling capacity of the synthesized hydrogels was also measured in various salt solutions. The time-temperature profile of the polymerization reaction, in order to investigate the effect of molecular oxygen was conducted in terms of the absence and presence of the atmospheric oxygen. The overall activation energy (Ea) of the graft polymerization reaction was found to be 2.93 KJ/mol.  相似文献   

17.
A novel biopolymer-based hydrogel composite was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with five factors and four levels. In the synthesis of the composite superabsorbent, N,N′-methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, acrylic acid (AA) as monomer, neutralization percent (NU), and collagen/kaolin weight ratio were used as important factors. From the analysis of variance of the test results, the most effective factor controlling equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 674 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore in this research, swollen gel strength of composite SAPs already swollen under realistic conditions (saline solution absorbency under load) was determined.  相似文献   

18.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

19.
Utilization of raw materials available in nature and their application to derive other useful products without any adverse impact on the environment has long been a desired goal. In this work, guar gum (GG) and attapulgite (APT) clay were used as raw materials for preparing guar gum‐g‐poly(acrylic acid)/attapulgite (GG‐g‐PAA/APT) superabsorbent composites through the graft copolymerization of GG, partially neutralized acrylic acid (AA) and APT in aqueous solution. The effects of reaction conditions such as concentrations of the initiator and crosslinker, APT content, etc. on water absorbency were investigated. The composite prepared under optimal conditions gave the best absorption of 529 g/g sample in distilled water and 61 g/g sample in 0.9 wt% NaCl solution. Swelling behaviors revealed that the superabsorbent composites retained a high water absorbency over a wide pH range of 4–11, and the developed composites also exhibited improved reswelling and water‐retention capabilities. The superabsorbent composites can be utilized as eco‐friendly water‐manageable materials for agricultural and horticultural applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Aquaphotomics is a new discipline that provides a framework for understanding changes in the structure of water caused by various perturbations, such as variations in temperature or the addition of solutes, using near infrared spectroscopy (NIRS). One of the main purposes of aquaphotomics is to identify water bands as main coordinates of future absorbance patterns to be used as biomarkers. These bands appear as consequence of perturbations in the NIR spectra. Curve resolution techniques may help to resolve and find new water bands or confirm already known bands. The aim of this study is to investigate the application of multivariate curve resolution-alternating least squares (MCR-ALS) to characterise the effects of various perturbations on the NIR spectra of water in terms of hydrogen bonding. For this purpose, the perturbations created by temperature change and the addition of four solutions of different ionic strength and Lewis acidity were studied (NaCl, KCl, MgCl2 and AlCl3, with concentrations ranging from 0.2 to 1 mol L−1 in steps of 0.2 mol L−1). Transmission spectra of all salt solutions and pure water were obtained at temperatures ranging from 28 to 45 °C. We have found that three distinct components with varying temperature dependence are present in water perturbed by temperature. The salt solutions studied exhibited similar trends with respect to the temperature perturbation, while the peak locations of their MCR-ALS pure components varied according to the ionic strength of the salt used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号