首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical, thermal and mechanical properties of nanocomposites, based on polypropylene (PP) filled by multi-walled carbon nanotubes (MWCNTs) and organo-clay (OC), were studied with the purpose of finding out the effect of OC on the microstructure of MWCNTs dispersion and PP/MWCNT/OC composites. It was found that addition of organo-clay nanoparticles improved nanotube dispersion and enhanced electrical properties of PP/MWCNT nanocomposites. Addition of organo-clay (MWCNT/OC ratio was 1/1) reduced the percolation threshold of PP/MWCNT nanocomposites from ?c = 0.95 vol.% to ?c = 0.68 vol.% of carbon nanotubes, while the level of conductivity became 2–4 orders of magnitude higher. The DSC and DMA analyses have shown that the influence of organo-clay on the thermal and mechanical properties of material was not significant in composites with both fillers as compared to PP/OC. Such an effect can be caused by stronger interaction of OC with carbon nanotubes than with polymer matrix.  相似文献   

2.
Polylactide (PLA) nanocomposites containing various functionalized multi-walled carbon nanotubes (MWCNTs) were prepared directly by melt compounding. The linear rheology and thermal stability of the PLA nanocomposites were, respectively, investigated by the parallel plate rheometer and TGA, aiming at examining the effect of surface functionalization on the dispersion of MWCNTs by using viscoelastic and thermal properties. Among three MWCNTs used in this work, the carboxylic MWCNTs present better dispersion in PLA matrix than the hydroxy and purified MWCNTs because the corresponding composite shows the lowest rheological percolation threshold, which is further confirmed by the TEM and solution experiments. The presence of all these three MWCNTs, however, nearly cannot improve the thermal stability effectively at the initial stage of degradation and the temperature corresponding to a weight loss of 5 wt% (T5 wt%) only shows slight increase in contrast to that of the neat PLA while with increase of decomposition level, the presence of carboxylic and purified MWCNTs retards the depolymerization of PLA evidently, showing remarkable increase in the temperature corresponding to maximum rate of decomposition (Tmax). Both the dispersion state and the surface functionalization of MWCNTs are very important to the thermal stability of PLA matrix.  相似文献   

3.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

4.
应用两相模型探讨多壁碳纳米管(MWCNTs)填充聚苯乙烯(PS)复合体系的动态流变特性.结果表明,体系线性黏弹行为与PS本体的应变放大效应及MWCNTs填料相的弛豫密切相关.在不同温度下,应变放大因子(Af)随MWCNTs体积分数(φ)的变化规律符合扩散控制的粒子串聚集(CCA)模型.φ<0.020时,MWCNTs分散...  相似文献   

5.
Electrically and thermally conductive high‐density polyethylene composites filled with hybrid fillers, multiwall carbon nanotubes (MWCNTs) and silver nanoparticles (Ag‐NPs), have been prepared in the melt state. The investigation of their electrical and thermal conductivities while comparing with high‐density polyethylene/MWCNT binary composites shows that the addition of only 3 vol% of Ag‐NPs does not reduce the electrical percolation threshold (Pc) that remains as low as 0.40 vol% of MWCNTs but leads to an increase in the maximum dc electrical conductivity of PE/MWCNT composites by two orders of magnitudes. Moreover, the association of both Ag‐NPs and carbon nanotube particles improved our composite's thermal conductivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Several series of nanocomposites were prepared using a latex-based process, the main step of which consisted of mixing an aqueous suspension of exfoliated carbon nanotubes (CNTs) and a polymer latex. In the present work, a systematic study on the electrical properties of fully amorphous (polystyrene - PS) as well as semi-crystalline (isotactic polypropylene - iPP) nanocomposites containing either single-wall (SWCNTs) or multi-wall carbon nanotubes (MWCNTs) has been conducted. Percolation thresholds as low as 0.05 wt.% or 0.1 wt.% were observed for SWCNT/iPP and MWCNT/iPP nanocomposites, respectively. The formation of a conductive percolating network at such a low CNT concentration is favored by the high intrinsic conductivity and the low viscosity of the polymer matrix. The electrical percolation threshold of the iPP-based system was found to be lower than its rheological percolation threshold. Beyond the percolation threshold, MWCNT-based nanocomposites generally exhibited higher conductivity levels than those based on SWCNTs, most probably due to the higher intrinsic conductivity of the MWCNTs as compared to that of the SWCNTs. These excellent electrical properties, associated with the strong nucleating effect of the CNTs reported earlier [1] and [2], render this type of nanocomposites extremely attractive from a technological point of view.  相似文献   

7.
Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (φc ≈ 0.9 vol %). The relationship between the volume conductivity and the filler fraction follows the scaling law of the percolation theory and suggests that the conducting particle networks were formed by random percolation of primary aggregates. The occurrence of the low φc can be explained by the presence of a fractal Phthalcon 11 particle network formed from fractal aggregates during crosslinking. The position of the percolation threshold and the volume conductivity of these crosslinked materials were found to depend heavily on the processing conditions applied. These dependencies are explained in terms of specific particle–matrix interactions and the particle–particle interactions and by taking into account different mechanisms of particle network formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 33–47, 2006  相似文献   

8.
Pristine multiwalled carbon nanotubes (MWCNTs) were impregnated in acrylonitrile butadiene rubber (NBR) using internal dispersion kneader and two roller mixing mill to investigate the effects of various nanotubes concentrations on the thermal transport/stability of rubber nanocomposites. Thermal conductivity (λ N) and thermal impedance (R) measurement experimental setups were established according to ASTM E1225-99 and D5470-03. The 1 mass % addition of MWCNTs in the polymer matrix has enhanced R up to 44 % and reduced λ N of the rubber nanocomposite up to 40 % compare to the base composite formulation. Thermal decomposition and differential thermal analyses of the fabricated composite specimens simulate that the thermal stability and endothermic capability are augmented with increasing the nanotubes contents in the host matrix. The progressive incorporations of carbon nanotubes into the rubber matrix have efficiently influenced the composite specimens regarding glass transition, crystallization, and melting temperatures including their specific enthalpies. Scanning electron microscopy along with the energy dispersive spectroscopy was used to analyze MWCNTs dispersion in NBR matrix, compositional analysis of the nanocomposite, and impregnated nanotubes.  相似文献   

9.
Thin polyetherimide (PEI) films containing 0.1–3 wt.% multi-walled carbon nanotubes (MWCNTs), have been prepared from three types of MWCNTs, namely pristine, oxidized and polymerized ionic liquid (PIL) functionalized CNTs. Oxidized and PIL functionalized CNTs (CNT–PIL) showed better dispersion in the matrix compared to pristine CNTs. For CNT–PIL, alignment of CNTs has been observed in the matrix. Regardless of the type of CNTs, their incorporation led to an increased thermal stability of the polymer matrix. Dynamic mechanical analysis showed that storage modulus increased by up to 25% (3 wt.% CNT–PIL) and an increase in the height of the damping peaks (tan δ). The addition of CNTs did not have any significant influence on the tensile properties and Tg of the polymer, and the electrical conductivity did not decrease in the case of modified CNTs.  相似文献   

10.
The non-isothermal crystallization and melting of ultra high molecular weight polyethylene (UHMWPE) were observed by means of differential scanning calorimetry and compared with those of ordinary high-density polyethylene (HDPE). The crystallization temperature (T c ) and melting point (T m ) of UHMWPE were found to be higher thanT c andT m of HDPE, and the latent heat of crystallization (δH c ) and fusion (δH m ) of UHMWPE are smaller thanδH c andδH m of HDPE. The results were explained in terms of the theory of polymer crystallization and the structure characteristics of UHMWPE. The relationships between the parameters (T c ,T T ,δH c andδH m ) and the molecular weight (M) of UHMWPE are discussed. Processing of the experimental data led to the establishment of four expressions describing the above relationships.  相似文献   

11.
Composites of poly(methyl methacrylate) (PMMA) with multi-walled carbon nanotubes (MWCNT) of varying aspect ratio and carboxylic acid functionality were prepared using melt mixing. The extent of dispersion and distribution of the MWCNTs in the PMMA matrix was investigated using a combination of high-resolution transmission electron microscopy (HRTEM), wide-angle X-ray diffraction (XRD) and Raman spectroscopy. The electrical resistivity and oscillatory shear rheological properties of the composites were measured as a function of MWCNT geometry, functionality, and concentration. The fundamental ballistic conductance of the pristine free-standing MWCNTs was investigated using a mechanically controlled break-junction method. The electrical conductivity of PMMA was enhanced by up to 11 orders of magnitude for MWCNT concentrations below 0.5 wt.%. MWCNTs having higher aspect ratio, above 500, or functionalized with carboxylic acid groups readily formed rheological percolated networks with thresholds, determined from a power law relationship, of 1.52 and 2.06 wt.%, respectively. The onset of pseudo-solid-like behaviour and network formation is observed as G′, η∗, and tan δ−1 are independent of frequency as MWCNT loading increased. Sufficiently long and/or functionalized tubes are required to physically bridge or provide interfacial interactions with PMMA to alter polymer chain dynamics. Carboxylic acid functionalization disrupts the crystalline order of MWCNTs due to a loss of π-conjugation and electron de-localisation of sp2 C-C bonds resulting in non-ballistic electron transport in these tubes, irrespective of how highly dispersed they are in the PMMA matrix.  相似文献   

12.
Thermal degradation behavior of multi-wall carbon nanotubes (MWCNTs)/ultra high molecular weight polyethylene (UHMWPE) nanocomposites, with different nanotubes contents (0.5, 1.5 and 3.5 wt%) prepared via in-situ polymerization technique have been investigated using thermal gravimetric analysis (TGA). TGA spectra revealed that these nanocomposites had enhanced thermal stability and no significant mass loss (<0.4 wt%) occurred up to 350°C. Thermal degradation of these UHMWPE/MWCNT nanocomposites was investigated in terms of parameters such as the onset temperature of degradation (T10), the decomposition temperature at 50% wt loss (T50), the degradation temperature of maximum rate of the weight loss (Tm), and the residual yields (WR) from TGA. The degradation activation energies (E) of virgin UHMWPE and its nanocomposites were estimated using the Friedman, the Ozawa, Flynn, and Wall (OFW), and the Kissinger's methods. Results indicated that the degradation activation energy for the virgin UHMWPE was 281.3 kJ/mol. The activation energy increased with increasing nanotube loading up to 1.5 wt% indicating that MWCNTs had a stabilizing effect on the degradation of the matrix. However, loadings of 3.5 wt% of nanotube or more could slightly decrease the activation energy. The decrease in the activation energy for degradation of nanocomposites with higher MWCNT concentrations might be attributed to the catalytic effects of nanotubes and polymerization catalyst residues. The “model fitting” method indicated a mechanism of n th-order auto-catalysis from the form of the conversion curves for UHMWPE/MWCNTs nanocomposites prepared via in-situ polymerization.  相似文献   

13.
Novel three-phase composites were prepared by embedding graphite nanosheets (GNs) and BaTiO3 nanoparticles into syndiotactic polystyrene (sPS) matrix via a solution blending and flocculation method. The dependences of electric and dielectric properties of the resultant sPS/BaTiO3-GNs composites on volume fractions of GNs (fGNs) and frequency were investigated. The percolation theory was employed to explain the electric and dielectric behavior of sPS/BaTiO3-GNs composite. It was found that the sPS/BaTiO3-GNs composite showed an obvious insulator-conductor transition with a much low percolation threshold of fGNs = 1.44 vol%. The dielectric permittivity of sPS/BaTiO3-GNs composite reached as high as 51.8 at 100 Hz at percolation threshold, which was about 18 and 7 times higher than that of pure sPS and sPS/BaTiO3 composite, respectively.  相似文献   

14.
Poly(ethylene terephthalate) (PET)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by three different methods: in-situ polymerization technique (I-S), direct mixing in the melt (DM) and dilution of a 0.5 wt.% masterbatch, synthesized via in-situ polymerization, using melt mixing (MB). The morphology of the resulting nanocomposites was examined using scanning and transmission electron microscopy and their electrical properties were characterized by ac conductivity measurements. The I-S series of samples exhibited an extremely low electrical percolation threshold (pc ≈ 0.06 wt.%), as compared to values of similar systems previously mentioned in literature. The MB series showed a comparable pc value (pc: 0.05-0.10 wt.%), whereas the investigation revealed a higher pc in the DM series (pc: 0.10-0.20 wt.%). Finally, selected concentrations of samples were prepared using OH-functionalized MWCNT, following the I-S procedure. The conductivity of these samples was found to be lower than that of samples with non-functionalized MWCNT.  相似文献   

15.
Summary: Volume conducting PA-12 based composites powders were chemically prepared by in situ polymerization and aniline doping at room temperature. These kinds of polyamide / PANI composites were investigated regarding their electrical properties. Their ac and dc electrical properties measured in the frequency range of 10−2–107 Hz are reported and the frequency dependence of electrical conductivity was investigated as a function of PANI concentration leading to the determination of the conductivity. The experimental conductivity was found to increase continuously with PANI content and explained by percolation theory with a relatively low percolation threshold of about 0.4 wt.%. The dielectric behavior of various PANI polymer composites has been characterized by the critical frequency ωc (denoting the crossover from the dc plateau of the conductivity to its frequency dependent ac behaviour). Modelling the conductivity behavior versus volume fraction using Slupkowski approach has revealed that the considered parameters are not sufficient to describe the electrical conductivity behavior.  相似文献   

16.
多壁碳纳米管对聚甲醛性能的影响   总被引:2,自引:1,他引:1  
将多壁碳纳米管(MWCNTs)和聚甲醛(POM)在转矩流变仪中熔融混合得到POM/MWCNT复合材料.研究了复合材料的形态,导热性能,导电性能,流变性能和结晶性能.结果表明,MWCNTs在没有经过处理的情况下能够均匀地分散在POM基体中;当向POM中添加1.0 wt%含量MWCNTs时,复合材料的导热系数上升到0.5289 W/(K m),比纯POM的导热系数0.198 W/(K m)提高1.5倍,通过有效介质方法(EMA)验证了体系导热系数提高幅度不大的原因是MWCNTs与POM之间形成了很高的界面热阻;当MWCNTs的含量为1.0 wt%时,体系产生了导电逾渗效应,逾渗值在0.5 wt%~1.0 wt%之间;MWCNTs对POM有显著的成核作用,当向POM中添加0.5 wt%含量的MWCNTs时,POM的结晶温度提高6℃左右,但当MWCNTs的添加量进一步增加时,结晶温度几乎不再变化,成核效果呈现"饱和"状态.另外,材料的复数黏度,储能模量和损耗模量随MWCNTs含量的增加而增加.  相似文献   

17.
A study on the correlation between electrical percolation and viscoelastic percolation for carbon black (CB) and carbon fiber (CF) filled high‐density polyethylene (HDPE) conductive composites was carried out through an examination of the filler concentration (?) dependence of the volume resistivity (ρ) and dynamic viscoelastic functions. For CB/HDPE composites, when ? was higher than the modulus percolation threshold (?G ~ 15 vol %), the dynamic storage modulus (G′) reached a plateau at low frequencies. The relationship between ρ and the normalized dynamic storage modulus (Gc/Gp, where Gc and Gp are the dynamic storage moduli of the composites and the polymer matrix, respectively) was studied. When ? approached a critical value (?r), a characteristic change in Gc/Gp appeared. The critical value (Gc/Gp)c was 9.80, and the corresponding ?r value was 10 vol %. There also existed a ? dependence of the dynamic loss tangent (tan δ) and a peak in a plot of tan δ versus the frequency when ? approached a loss‐angle percolation (?δ = 9 vol %). With parameter K substituted for A, a modified Kerner–Nielson equation was obtained and used to analyze the formation of the network structure. The viscoelastic percolation for CB/HDPE composites could be verified on the basis of the modified equation, whereas no similar percolation was found for CF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1199–1205, 2004  相似文献   

18.
Linear low‐density polyethylene (LLDPE) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1680–1691  相似文献   

19.
Carbon fillers including multi-walled carbon nanotubes (MWCNTs), carbon black (CB) and graphite were introduced in a cyanate ester (CE) resin, respectively. The effects of the fillers on the electrical and thermal conductivity of the resin were measured and analyzed based on the microscopic observations. MWCNTs, CB and graphite exhibited percolation threshold at 0.1 wt%, 0.5 wt% and 10 wt%, respectively. The maximal electrical conductivity of the composites was 1.08 S/cm, 9.94 × 10−3 S/cm and 1.70 × 10−5 S/cm. MWCNTs showed the best enhancement on the electrical conductivity. The thermal behavior of the composites was analyzed by calorimetry method. Incorporation of MWCNTs, CB and graphite increased the thermal conductivity of CE resin by 90%, 15% and 92%, respectively. Theoretical models were introduced to correlate the thermal conductivity of the CE/MWCNTs composite. The interfacial thermal resistance between CE resin and MWCNTs was 8 × 10−8 m2K/W and the straightness ratio was 0.2. The MWCNTs were seriously entangled and agglomerated. Simulation results revealed that thermal conductivity of the CE/MWCNTs composites can be substantially elevated by increasing the straightness ratio and/or filler content of MWCNTs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号