首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A new protocol for preparation of thermoresponsive poly(N-isopropylacrylamide, NIPAM) containing block copolymers is described. It involves two successive heterogeneous controlled/living nitroxide-mediated polymerizations (NMPs) in supercritical carbon dioxide (scCO2) using N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), as the nitroxide. Precipitation NMPs give narrow dispersity macroinitiators (MIs), and a first report of the controlled/living polymerization of N,N-dimethylacrylamide (DMA) in scCO2 is described. The MI is then used in an inverse suspension NMP of NIPAM in scCO2 resulting in the efficient preparation of block copolymers containing DMA, tert-butyl acrylate and styrene. Aqueous cloud point temperature analysis for poly(DMA)-b-poly(NIPAM) and poly(acrylic acid)-b-poly(NIPAM) shows a significant dependence on poly(NIPAM) chain length for a given AB block copolymer.  相似文献   

2.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

3.
Well-defined poly(dimethylsiloxane)-b-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate-b-poly(styrene) (PDMS-b-PHFBMA-b-PS) triblock copolymers were prepared by two-step reversible addition-fragmentation chain transfer (RAFT) polymerization. The two-step RAFT polymerization proceeded in a controlled manner as demonstrated by the macromolecular characteristics of the blocks and corresponding polymerization kinetic data. Furthermore, surface properties and morphologies of the polymers were investigated with static water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) which showed low surface energy and microphase-separation surfaces.  相似文献   

4.
The novel comb-type biodegradable graft copolymers based on ε-caprolactone and l-lactide were synthesized. Firstly, 2-oxepane-1,5-dione (OPD) was synthesized by the Baeyer-Villiger oxidation of 1,4-cyclohexanedione, and was subsequently copolymerized with ε-caprolactone (CL) to produce poly(2-oxepane-1,5-dione-co-ε-caprolactone) (POCL) catalyzed by stannous(II) 2-ethylhexanoate in toluene. Then, POCL was converted into poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone) (PHCL) using sodium borohydride as reductant. Finally, poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone)-g-poly(l-lactide) (PHCL-g-PLLA) were prepared successfully by bulk ring-opening polymerization of l-lactide using PHCL as a macro-initiator. All the copolymers have been characterized by 1H and 13C NMR, DSC, and GPC. Compared with the random copolymer of poly(CL-co-LA), the elongation is highly increased. And the thermal analysis showed that the crystallization rate of the PCL backbone in the graft copolymers was greatly reduced compared to the PCL homopolymer. The hydrolytic degradation of the copolymer was much faster in a phosphate buffer (pH = 7.4) at 37 °C, which is confirmed by the weight loss and change of intrinsic viscosity.  相似文献   

5.
Poly(ethylene oxide) methyl ether/polystyrene/poly(l-lactide) (MPEO/PSt/PLLA) ABC miktoarm star copolymers were synthesized by combination of reversible addition-fragmentation transfer (RAFT) polymerization and ring-opening polymerization (ROP) using bifunctional macro-transfer agent, MPEO with two terminal dithiobenzoate and hydroxyl groups. It was prepared by reaction of MPEO with maleic anhydride (MAh), subsequently reacted with dithiobenzoic acid and ethylene oxide. RAFT polymerization of St at 110 °C yielded block copolymer, MPEO-b-PSt [(MPEO)(PSt)CH2OH], and then it was used to initiate the polymerization of l-lactide in the presence of Sn(OCt)2 at 115 °C to produce ABC miktoarm star polymers, s-[(MPEO)(PSt)(PLLA)]. The structures of products obtained at each synthetic step were confirmed by NMR and gel permeation chromatography data.  相似文献   

6.
Well-defined poly(dimethylsiloxane)-b-poly(2,2,3,3,4,4,4-heptafluorobutylmethacryl-ate-b-poly(styrene) (PDMS-b-PHFBMA-b-PS) triblock copolymers were prepared by two-step reversible addition-fragmentation chain transfer (RAFT) polymerization. A comprehensive mathematical model for the two-step RAFT polymerization in a batch reactor was presented using the method of moments. The model described molecular weight, monomer conversion and polydispersity index as a function of polymerization time. Good agreements in the polymerization kinetics were achieved for fitting the kinetic profiles with the suggested model. In addition, the model was used to predict the effects of initiator concentration, chain transfer agent concentration and monomer concentration on the two-step RAFT polymerization kinetics. The simulated results showed that for the two-step RAFT polymerizations, the effects initiator concentration, chain transfer agent concentration and monomer concentration are identical and the influence degrees are different yet.  相似文献   

7.
Organic–inorganic pentablock copolymers have been synthesized via atom transfer radical polymerization (ATRP) of styrene (St) and vinyl acetate (VAc) monomers at 60 °C using CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine as a catalyst system initiated from boromoalkyl-terminated poly(dimethylsiloxane) (PDMS)/cyclodextrins macroinitiator (Br-PDMS/γ-CD). Br-PDMS-Br was reacted with γ-CD in different conditions with inclusion complexes being characterized through hydrogen nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). Resulting Br-PDMS-Br/γ-CD inclusion complexes were taken as macroinitiators for ATRP of St and VAc. Well-defined poly(styrene)-b-poly(vinyl acetate)-b-poly(dimethylsiloxane/γ-cyclodextrin)-b-poly(vinyl acetate)-b-poly(styrene) (PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt) pentablock copolymer was characterized by 1H NMR, gel permeation chromatograph (GPC) and DSC. There was a good agreement between the number-average molecular weight calculated from 1H NMR spectra and that of theoretically calculated. Pentablock copolymers consisting of Br-PDMS-Br/γ-CD inclusion complex as central blocks (inorganic block) and PVAc and PSt as terminal blocks were synthesized by this technique. PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt pentablock copolymer can undergo a temperature-induced reversible transition upon heating of the copolymer complex from white complex at 22 °C to green complex in 55 °C which characterized with XRD and 1H NMR. XRD showed a change in crystallinity percent of St peak with changing the temperature which calculated by Origin75 software.  相似文献   

8.
The preparation of some unique block copolymers and block copolymer particles via radical heterophase polymerization is described. Special emphasis is placed on double hydrophilic block copolymers such as poly(styrene sulfonic acid)-b-poly(methacrylic acid) diblock copolymer and double hydrophilic block copolymer particles consisting of both hydrophilic shells and cross-linked hydrophilic cores. Examples are given for the application of such particles as adsorbents, nano-reactors for chemical synthesis, and as colloidal stabilizers in both heterophase polymerization and biomineralization reactions.  相似文献   

9.
The star-shaped organic/inorganic hybrid poly(l-lactide) (PLLA) based on polyhedral oligomeric silsesquioxane (POSS) was prepared using octa(3-hydroxypropyl) polyhedral oligomeric silsesquioxane as initiator via ring-opening polymerization (ROP) of l-lactide (LLA). The molecular weight of POSS-containing star-shaped hybrid PLLA (POSSPLLA) can be well controlled by the feed ratio of LLA to initiator. The POSSPLLA was further functionalized into the macromolecular reversible addition-fragmentation transfer (RAFT) agent for the polymerization of N-isopropylacrylamide (NIPAM), leading to the POSS-containing star-shaped organic/inorganic hybrid amphiphilic block copolymers, poly(l-lactide)–block–poly(N-isopropylacrylamide) (POSS(PLLA–b–PNIPAM)). The self-assembly behavior of POSS(PLLA–b–PNIPAM) block copolymers in aqueous solution was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). DLS showed the PNIPAM block in the aggregates is temperature-responsive and its phase-transition is reversible. TEM proved that the star-shaped POSS(PLLA–b–PNIPAM) amphiphilic block copolymers can self-assemble into the vesicles in aqueous solution. The vesicular wall and coronas are composed of the hydrophobic POSS core and PLLA, and hydrophilic PNIPAM blocks, respectively. Therefore, POSSPLLA and POSS(PLLA–b–PNIPAM) block copolymers, as a class of novel organic–inorganic hybrid materials with the advantageous properties, can be potentially used in biological and medical fields.  相似文献   

10.
A model graft copolymer in which position of graft points was set to the center of a backbone molecule was prepared via anionic living polymerization. Polystyrene-block-poly(p-tert-butoxystyrene)-block-polystyrene (PSt-b-PBSt-b-PSt) was prepared by three-stage sequential addition. The tert-butyl group was removed from PBSt by hydrogen bromide to yield PSt-b-PHSt-b-PSt, having a poly(p-hydroxystyrene) (PHSt) block. The hydroxyl group of PHSt was reacted with dimeric potassium dianions of 1, 1-diphenylethylene (DPE-K) or cumyl potassium (cumyl K) to yield the corresponding macromolecular initiators of PSt-b-PHStK+-b-PSt containing the potassium alkoxide ion of PHSt. The newly formed alkoxide groups and remaining initiators of DPE-K or cumyl K are capable of initiating the additionally introduced ethylene oxide (EO). Thus, two block–graft copolymers of polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene oxide)]-block-polystyrene (PSt-b-(PHSt-g-PEO)-b-PSt) were prepared by a “grafting from” process (backbone initiation). A PSt-b-PHSt-b-PSt backbone (Mn = 1.75 × 105 by osmometry and Mw/Mn = 1.08 by GPC), and two PSt-b-(PHSt-g-PEO)-b-PSt block–graft copolymers (Mn = 2.45 × 105 by osmometry and Mw/Mn < 1.10 by GPC) had narrow molecular weight distributions. A relationship between nonquantitative metallation and spacing of the graft points on a backbone molecule was discussed in detail. Two benzene-cast films formed clear microphase-separated structures of lamellar structure. The dependence of composition on the morphology of the block–graft copolymers was found to differ from that of common block copolymers. A degree of crystallinity of PEO segment and lamellar thickness of PEO phase serving as graft molecule were also found to differ from those of homo PEO and/or PEO segment in common block copolymer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3021–3034, 1998  相似文献   

11.
The synthesis of copolymers constituted of a central polydimethylsiloxane (PDMS) block flanked by two polyamide (PA) sequences is described. α, ω-diacyllactam PDMS, when used as macroinitiator of lactam polymerization, gives rise to the expected triblock copolymer. Likewise, PDMS-g-PA graft copolymers are obtained from acyllactam containing polysiloxanes. NaAlH2(OCH2CH2OMe)2 turns out to be the best suited activating agent for the polymerization of ?-caprolactam, in the experimental conditions required for the synthesis of polysiloxane–polyamide copolymers. The nucleophilic species formed by reaction of NaAlH2(OCH2CH2OMe)2 with ?-caprolactam—2-[bis(methoxyethoxy) aluminumoxy]-1-azacycloheptane sodium—is indeed nucleophilic enough to bring about the growth of PA chains and mild enough to stay inert towards PDMS. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Model diblock copolymers of poly(1,4‐butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS, were synthesized by the sequential anionic polymerization (high vacuum techniques) of butadiene and hexamethylciclotrisiloxane (D3) in the presence of sec‐BuLi. By homogeneous hydrogenation of PB‐b‐PDMS, the corresponding poly(ethylene) and poly(dimethylsiloxane) block copolymers, PE‐b‐PDMS, were obtained. The synthesized block copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR), size‐exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and rheology. SEC combined with 1H NMR analysis indicates that the polydispersity index of the samples (Mw/Mn) is low, and that the chemical composition of the copolymers varies from low to medium PDMS content. According to DSC and TGA experiments, the thermal stability of these block copolymers depends on the PDMS content, whereas TEM analysis reveals ordered arrangements of the microphases. The morphologies observed vary from spherical and cylindrical to lamellar domains. This ordered state (even at high temperatures) was further confirmed by small‐amplitude oscillatory shear flow tests. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1579–1590, 2006  相似文献   

13.
Well‐defined poly(tert‐butyl methacrylate)‐graft‐poly (dimethylsiloxane) (PtBuMA‐g‐PDMS) graft copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) copolymerization of methacryloyl‐terminated poly (dimethylsiloxane) (PDMS‐MA) with tert‐butyl methacrylate (tBuMA) in ethyl acetate, using 2,2′‐azobis(isobutyronitrile) (AIBN) as the initiator and 2‐cyanoprop‐2‐yl dithiobenzoate as the RAFT agent. The RAFT statistical copolymerization of PDMS‐MA with tBuMA is shown to be azeotropic and the obtained PtBuMA‐g‐PDMS graft copolymers have homogeneously distributed branches because of the similar reactivity of monomers (rtBuMArPDMSMA ≈ 1). By the RAFT block copolymerization of PDMS‐MA with tBuMA, moreover, narrow molecular weight distribution (Mw/Mn < 1.3) PtBuMA‐g‐PDMS graft copolymers with gradient or blocky branch spacing were synthesized. The graft copolymers exhibit the glass transitions corresponding to the PDMS and PtBuMA phase, respectively. However, the arrangement of monomer units in copolymer chains and the length of PtBuMA moieties have important effects on the thermal behavior of PtBuMA‐g‐PDMS graft copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
This paper reports on the preparation, characterization and stealthiness of superparamagnetic nanoparticles (magnetite Fe3O4) with a 5 nm diameter and stabilized in water (pH ? 6.5) by a shell of water-soluble poly(ethylene oxide) (PEO) chains. Two types of diblock copolymers, i.e., poly(acrylic acid)-b-poly(ethylene oxide), PAA-PEO, and poly(acrylic acid)-b-poly(acrylate methoxy poly(ethyleneoxide)), PAA-PAMPEO, were prepared as stabilizers with different compositions and molecular weights. At pH ? 6.5, the negatively ionized PAA block interacts strongly with the positively-charged nanoparticles, thus playing the role of an anchoring block. Aggregates of coated nanoparticles were actually observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter was in the 50-100 nm range and the aggregation number (number of nanoparticles per aggregate) was lying between several tens and hundred. Moreover, the stealthiness of these aggregates was assessed “in vitro” by the hemolytic CH50 test. No response of the complement system was observed, such that biomedical applications can be envisioned for these magnetic nanoparticles. Preliminary experiments of magnetic heating (10 kA/m; 108 kHz) were performed and specific absorption rate varied from 2 to 13 W/g(Fe).  相似文献   

15.
三嵌段共聚物PAN-b-PEG-b-PAN的合成及其自组装行为的研究   总被引:3,自引:0,他引:3  
雷忠利  刘亚兰 《化学学报》2006,64(24):2403-2408
利用原子转移自由基聚合(ATRP)制得了分子量可控、分子量分布窄的聚丙烯腈-b-聚乙二醇-b-聚丙烯腈P(AN-b-PEG-b-PAN)嵌段共聚物. 通过1H NMR, FTIR, 凝胶渗透色谱(GPC)对所得产物的结构和分子量进行了表征并通过TG和DTA考察了该嵌段共聚物的热稳定性; 运用透射电子显微镜(TEM)、荧光探针技术和动态光散射(DLS)研究了P(AN)27-b-P(EG)45-b-P(AN)27在溶剂水中胶束的形成、结构、形貌和胶束粒径. 结果表明, 三嵌段共聚物P(AN)27-b-P(EG)45-b-P(AN)27的热稳定性较纯聚乙二醇P(EG)好, 且柔性链PEG的引入对嵌段共聚物的放热峰位置没有显著的影响. 当改变此嵌段共聚物溶液浓度时, 该嵌段共聚物会自组装成不同形状的胶束, DLS测量的胶束粒径大于TEM观察的结果, 其临界胶束浓度(cmc)约为4.46×10-4 g•L-1.  相似文献   

16.
Among three cyclopentadienyl titanium complexes studied, CpTiCl2(OEt), containing a 5% excess CpTiCl3, has proven to be a very efficient catalyst for the ring‐opening polymerization (ROP) of L ‐lactide (LLA) in toluene at 130 °C. Kinetic studies revealed that the polymerization yield (up to 100%) and the molecular weight increase linearly with time, leading to well‐defined PLLA with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Based on the above results, PS‐b‐PLLA, PI‐b‐PLLA, PEO‐b‐PLLA block copolymers, and a PS‐b‐PI‐b‐PLLA triblock terpolymer were synthesized. The synthetic strategy involved: (a) the preparation of OH‐end‐functionalized homopolymers or diblock copolymers by anionic polymerization, (b) the reaction of the OH‐functionalized polymers with CpTiCl3 to give the corresponding Ti‐macrocatalyst, and (c) the ROP of LLA to afford the final block copolymers. PMMA‐g‐PLLA [PMMA: poly(methyl methacrylate)] was also synthesized by: (a) the reaction of CpTiCl3 with 2‐hydroxy ethyl methacrylate, HEMA, to give the Ti‐HEMA‐catalyst, (b) the ROP of LLA to afford a PLLA methacrylic‐macromonomer, and (c) the copolymerization (conventional and ATRP) of the macromonomer with MMA to afford the final graft copolymer. Intermediate and final products were characterized by NMR spectroscopy and size exclusion chromatography, equipped with refractive index and two‐angle laser light scattering detectors. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1092–1103, 2010  相似文献   

17.
An (AB)n-type multiblock copolymer containing alternating poly(l-lactide) (PLLA) and poly(dimethyl siloxane) (PDMS) segments was synthesized by chain extension of hydroxyltelechelic PLLA-PDMS-PLLA triblock copolymers, which were prepared by the ring-opening polymerization of l-lactide initiated by α,ω-functionalized hydroxyl poly(dimethyl siloxane), using 1,6-hexamethylene diisocyanate as a chain extender. The triblock and the multiblock copolymers were characterized by FT-IR, 1H NMR and GPC. From the results of thermal analysis, two glass transition temperatures which were measured by DSC showed the occurrence of phase separation phenomena in the triblock and multiblock copolymers because of the difference of solubility parameters between PLLA and PDMS segments. The effect of the chemical composition of the triblock copolymers, including the Mw and the constitutive segment chain length of the macrodiol, on the development of the Mw of the multiblock was discussed based on diffusion effect. Furthermore, the consumption of the isocyanate groups was determined by FT-IR to investigate the dependence of the reaction kinetics of the urethane formation on the chemical composition of the triblock copolymer. The results reveal that the order of the chain extension reaction depended on the Mw of the triblock copolymer: a second order reaction was transformed into a third reaction as the Mw of the triblock copolymer increased from 7000 to 25,000 (g/mol) perhaps because of the inhibition of the formation of an active complex involved in the catalyzed-urethane reaction by the polymer chain aggregation. Finally, the mechanical properties of the multiblock copolymers demonstrated that the introduction of the extremely flexible PDMS segment substantially improved the elongation at breakage, and the tensile strength and the tensile modulus declined due to the intrinsic elasticity of such segments.  相似文献   

18.
The purpose of this study is to ascertain the relationship between the structure of an amphiphilic nonionic polymer and its toxicity for cells (cytotoxicity) growing in a culture. To this end, 16 polymers of different architectures and chemical structures are tested, namely, linear triblock copolymers of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronics); diblock copolymers of propylene oxide, ethylene oxide, and hyperbranched polyglycerol; alternating and diblock copolymers of ethylene oxide and dimethylsiloxane; and two surfactants containing linear (Brij-35) or branched (Triton X-100) aliphatic chains. Polymer-cell interaction is assayed in a culture medium in the absence of serum. Effective concentrations of the polymers causing 50% cell death, EC50, vary within three orders of magnitude. Toxic concentrations of the alternating copolymer, Triton X-100, and Brij-35 are lower than their CMC values. In contrast, all block copolymers, regardless of their chemical structures, become toxic at concentrations above the CMC; that is, they acquire cytotoxicity only in the micellar form. The EC50 values of the copolymers depend on their hydrophilic-liphophilic balance (HLB) through the following empirical formula: EC50 × 106 = 8.71 × HLB2.1. This relationship makes it possible to predict the cytotoxic concentration region of a block copolymer of a known structure.  相似文献   

19.
Gold nanoparticles by using the mixture of polystyrene-block-poly(2-vinyl pyridine)/poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP/P2VP-b-PEO) block copolymers as encapsulating agent was prepared. The prepared nanoparticles were characterized by transmission electron microscopy, UV-Vis spectroscopy and contact angle. It is demonstrated that the obtained gold nanoparticles are covered with mixed block copolymer shells. The hydrophilic property of the nanoparticles can be varied by the change of the dispersion medium. The obtained gold nanoparticles with mixed block copolymer shells are stable in organic solvents (such as tetrahydrofuran and toluene) and water.  相似文献   

20.
The cobalt-mediated radical polymerization of vinyl acetate was extended to copolymerization with 1-alkenes (ethylene or 1-octene). In agreement with the low amount of 1-alkene that could be incorporated into the copolymer, a gradient structure was predictable, but a rather low polydispersity was observed. A poly(vinyl acetate)-b-poly(octene) copolymer was also successfully synthesized, leading to a poly (vinyl alcohol)-b-poly(octene) amphiphilic copolymer upon the methanolysis of the poly (vinyl acetate) block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2532–2542, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号