首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An inexpensive and simple method was adopted for the preparation of chitosan microspheres, crosslinked with glutaraldehyde (GA), for the controlled release of an insoluble drug‐ibuprofen, which is a commonly used NSAID (non‐steroidal anti‐inflammatory drug). The chitosan microspheres were prepared by different methods and varying the process conditions such as rate of stirring, concentration of crosslinking agent, and drug:polymer ratio in order to optimize these process variables on microsphere size, size distribution, degree of swelling, drug entrapment efficiency, and release rates. The absence of any chemical interaction between drug, polymer, and the crosslinking agent was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) techniques. The microspheres were characterized by optical microscopy, which indicated that the particles were in the size range of 30–200 µm and scanning electron microscopy (SEM) studies revealed a smooth surface and spherical shape of microspheres. The microsphere size/size distributions were increased with the decreased stirring rates as well as GA concentration in the suspension medium. Decreasing the concentration of crosslinker increased the swelling ratio whereas extended crosslinking exhibited lowered entrapment efficiency. The in vitro drug release was controlled and extended up to 10 hr. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Catechin-loaded calcium pectinate gel beads prepared by internal gelation were characterized for their catechin entrapment efficiency and release behavior. The entrapment efficiency was higher when the beads were prepared with a lower catechin-to-pectin ratio, shorter gelling time, higher pectin concentration, and lower acetic acid concentration. The entrapment efficiency was much higher under all tested conditions, when the beads were prepared by internal gelation instead of external gelation. The catechin release was slower for the beads prepared with lower catechin-to-pectin ratio, longer gelling time, and higher concentrations of pectin and acetic acid in both simulated gastric and intestinal fluids. Antioxidant power of catechin was effectively maintained in alkaline simulated intestinal fluid when catechin was entrapped within the beads, compared to cases where it was not entrapped, indicating that the beads can protect catechin molecules from the alkaline environment and release them in a sustained fashion.  相似文献   

3.
A new particulate delivery matrix based on macromolecular conjugate, chitosan-whey protein isolate ([Ch-WPI]) was found to exhibit controlled release properties. Fourier-Transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) demonstrated the formation of the conjugate. Particle formation of the conjugate was carried out by the ionic crosslinking technique using sodium tripolyphospate (STP). Catechin entrapped particles were prepared by varying the weight ratios of STP to conjugate [Ch-WPI]. Both the placebo and catechin-entrapped particles were found to be positively charged below pH 7.2, indicating their stability to aggregation and their suitability for bioadhesion in the gastrointestinal tract (GIT). The entrapment efficiencies of the particles ranged between 29% and 42% for particles prepared using different weight ratios of the conjugate to STP. There was 34-56% of catechin release in simulated GIT conditions depending on the entrapment efficiencies and the degree of crosslinking of the particles.  相似文献   

4.
Mucoadhesive chitosan microspheres of acyclovir were prepared to prolong the gastric residence time using simple emulsification phase separation technique. The particle morphology of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (31.62 ± 4.64). The entrapment efficiency was found to be in the range of 40.24 to 67.29%. The concentration of the glutaraldehyde (25%v/v) as a cross-linker 2 ml and drug polymer ratio of 1:2 caused an increase in the entrapment efficiency and the extent of drug release. The optimized chitosan microspheres were found to possess good bioadhesion (79.89 ± 1.01%). The gamma-scintigraphy study showed the gastric residence time of more than 6 hours which revealed that optimized formulation could be a good choice for gastroretentive systems.  相似文献   

5.
Novel carboxymethyl chitosan (O-CMCS) microspheres containing an anti-tumor drug chelerythrine (CHE) have been successfully prepared by an emulsion crosslinking method using glutaraldehyde. The optimized microsphere formulation was characterized for particle size, shape, morphology, crystallinity and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency and in vitro drug release of chelerythrine loaded microspheres were found to be 12.18 μm, 4.08%, 54.78% and 35.30% at pH 7.4 in 20 h, respectively. The optimized microspheres had an imperfect crystalline lattice and a spherical, rough morphology and the CHE release from O-CMCS microspheres followed the Higuchi matrix model. All these results suggested that O-CMCS microspheres are a promising carrier system for controlled drug delivery.  相似文献   

6.
Novel biodegradable pH- and thermal-responsive interpenetrating polymer network (IPN) hydrogels were prepared for controlled drug delivery studies. The IPN hydrogels were obtained in mild aqueous acid media by irradiation of solutions of N-acryloylglycine (NAGly) mixed with chitosan, in the presence of glutaraldehyde as a crosslinking agent and using 2,2-dimethoxy-2-phenyl acetophenone as photoinitiator. These hydrogels were subjected to equilibrium swelling studies at different temperatures (25 °C, 37 °C and 45 °C) in buffer solutions of pH 2.1 and 7.4 (similar to that of gastric and intestinal fluids respectively). 5-Fluorouracil (5-FU) was entrapped in the hydrogels, and drug release studies carried out at 37 °C in buffer solutions at pH 2.1 and 7.4.  相似文献   

7.
The aim of the present study was to prepare and evaluate microspheres of Eudragit (RS, RL and RSPO) containing an anticancer drug 5-FU. Microspheres were prepared by O/O solvent evaporation method using a acetone/liquid paraffin system. Magnesium stearate was used as the droplet stabilizer and n-hexane was added to harden the microspheres. The prepared microspheres were characterized for their micromeretic properties and entrapment efficiency; as well by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), thin layer chromatography (TLC) and scanning electron microscopy (SEM) revealed the crystalline nature of drug in a final state. The in vitro release studies were performed in a Phosphate Buffer Solution (PBS) pH 7.4. The best fit release kinetics was achieved with a Higuchi plot. The yields of preparation and entrapment efficiencies were very high with a larger particle size for all the formulations. Mean particle size, entrapment efficiency and production yield were highly influenced by the type of polymer and polymer concentration. It is concluded from the present investigation that various Eudragit are promising controlled release carriers for 5-FU.  相似文献   

8.
The objective of the work is to synthesize pectin-N, N-Dimethylacrylamide (DMAA) hydrogel by gamma radiation without using any initiators and cross-linking agents. Effect of radiation doses on gel fraction and equilibrium swelling as a function of pH were studied, and 5 kGy radiation dose was found to be the optimum dose for hydrogel synthesis. The grafting /crosslinking was investigated by Fourier transform infrared spectroscopy. Thermal properties and surface morphology were studied by differential scanning calorimetry and scanning electron microscopy. To study the drug release kinetics, 5-fluorouracil was loaded into the hydrogel and in vitro release was carried out in simulated gastric and intestinal fluid. The release profile of drug showed that more than 90% of the loaded drugs were released after 4 hours at both gastric fluid and intestinal fluid pH. Drug release data was fitted into zero order, Higuchi and Korsmeyer-Peppas kinetic models. Higuchi model was found to be the best fitted and release exponent ‘n’ value of Korsmeyer-Peppas model indicated the non-Fickian transport.  相似文献   

9.
2-Acryloxyacetophenone(AAP) was prepared and subjected to suspension polymerization with methyl methacrylate(MMA) using azobisisobutyronitrile(AIBN) as free radical initiator.The differently sulfonated AAP-MMA cross-linked copolymer cationic exchange resins were prepared by sulfonation with concentrated sulphuric acid at 70 °C.Several characteristics of the prepared resins were evaluated,i.e.FTIR,the ion-exchange capacity(IEC),thermo gravimetric analysis(TGA),particle size distribution and microscopic morphology.The resin characteristics were altered with degree of sulfonation,providing that differently sulfonated resins could be prepared.The behavior of atenolol(ATL) loading and in vitro release in the USP stimulated gastric and intestinal fluids of the obtained resins were evaluated.The drug loaded in the resin increased with increasing degree of sulfonation and hence the drug binding site in resin employed.The drug release was lower from the resins with higher content of sulfonic group due to the increase in the diffusive path depth.The drug release was a little lower in stimulated gastric fluid(SGF) than in stimulated intestinal fluids(SIF).The basic groups,ionized to a little greater extent in SGF and preferred binding with the resin rather than releasing.Hence,the differently sulfonated resins could be utilized as novel carriers for drug delivery.  相似文献   

10.
Brinzolamide is a carbonic anhydrase inhibitor used in the eye drop form for the treatment of glaucoma. It requires frequent dosing to attain therapeutic concentration. Therefore, this study aimed to prepare sustained ocular drug delivery of brinzolamide. The objective of the study was to prepare a hydrogel loaded with a nanostructured lipid carrier (NLC) of brinzolamide. The hydrogel was prepared by a green synthesis approach using genipin as a natural crosslinking agent and polymers such as carboxymethyl chitosan and poloxamer 407. The melt emulsification-ultra sonication method was used to prepare a nanostructured lipid carrier of brinzolamide, which was loaded into a hydrogel using a swelling and loading method. The NLC formulation has shown small particle sizes of 111.20 ?± ?2.15 ?nm, polydispersity index of 0.280 ?± ?0.005 and % entrapment efficiency of 82.16% ?± ?0.14%. The NLC-loaded hydrogels of brinzolamide formulations were studied for swelling properties and showed temperature and pH-responsive swelling behavior. The optimized hydrogel formulation has been studied for in vitro drug release and showed drug release for a longer duration (24 ?h) than marketed eye drops (8 ?h). In an ex vivo study, hydrogel formulations showed transcorneal permeability 4.54 times greater than marketed eye drops. The hydrogel formulation of brinzolamide produced by the green synthesis method has shown sustained-release properties with no sign of ocular irritation. Hence, the hydrogel of brinzolamide-loaded NLC would be the potential drug delivery approach in the near future for sustained ocular drug delivery in glaucoma management.  相似文献   

11.
Abstract

Novel polymeric biodegradable and biocompatible copolymeric hydrogels based on N-vinyl-2-pyrrolidone (NVP) and polyethylene glycol diacrylate (PAC) were designed and synthesized. PAC macromonomer was synthesized by a modified procedure and characterized. Poly[N-vinyl-2-pyrrolidone-polyethylene glycol diacrylate] (Poly[NVP-PAC]) hydrogels were synthesized by varying the concentration of PAC. Azobisisobutyronitrile (AIBN) was used as the free radical initiator and N,N1-methylene bis(acryl-amide) (BIS) was employed as the crosslinking agent. These hydrogels were characterized by various spectroscopic techniques. Fourier transform-infrared spectroscopy (FT-IR) confirms the formation of copolymer. Thermogravimetric analysis (TGA) curves obtained were continuous indicating the formation of copolymer. The glass transition temperature (Tg) of the copolymer was measured using differential scanning calorimetry (DSC). The equilibrium swelling measurements were carried out in simulated gastric and intestinal fluids (SGF & SIF). These swelling studies indicated that these gels had a higher sorption capacity in SIF when compared to that in SGF. 5-Fuorouracil (5-FU), an anti-cancer drug was entrapped in these hydrogels and the in-vitro release profiles were established in a sequential manner in SGF and SIF. About 50–56% of the drug entrapped was released in a period of 10 days.  相似文献   

12.
Gambier is one of Indonesian superior estate crop. Among several chemical compounds in gambier, catechin from polyphenols group has the greatest benefit for health. However, catechin has a limitedness of stability that causes a low bioavailability property. One way to maintain and improve the stability of catechin is the application of nanotechnology. The objective of this study is to obtain the best formulation in producing a solution of catechin nanoparticles with particle droplet size <300 nm as an antioxidant material. Observations were conducted to the formulations of the concentration of the solution of chitosan (0.2 and 0.4%), sodium tripolyphosphate (Na-TPP) (0.1 and 0.2%), catechin extract (0.3, 0.4, 0.5 and 0.6%) and the ratio of chitosan solution with catechin solution in Na-TPP (5: 1 and 7: 1) in order to determine one that yields the best solution. Observations were carried on the stability and characteristics of catechin nanoparticle solution including particle size, particle surface topography and internal structure. Catechin nanoparticles with best particle size was found in formula with 0.2% chitosan solution, 0.4% catechin solution, 0.1% Na-TPP solution and ratio of chitosan solution with withcatechin in Na-TPP solution 7: 1, that is 137.6 nm. Physically, the best formulation of catechin nanoparticleshas good particle surface topography, internal particle structure and emulsion stability.  相似文献   

13.
The main goal of the present study was to investigate the microencapsulation, in vitro release capacity and efficiency of catechin-rich Acacia catechu extract by Clinosorbent-5 (CLS-5) microparticles by in-depth detailed analyses and mathematical modelling of the encapsulation and in vitro release kinetics behaviour of the polyphenol-mineral composite system. The bioflavanol encapsulation and release efficiency on/from the mineral matrix were assessed by sorption experiments and interpretative modelling of the experimental data. The surface and spectral characteristics of the natural bioactive substance and the inorganic microcarrier were determined by Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet/Visible (UV/Vis) spectrophotometric analyses. The maximum extent of catechin microencapsulation in acidic medium was 32%. The in vitro release kinetics study in simulated enzyme-free gastric medium (pH = 1.2) approved 88% maximum release efficiency achieved after 24 h. The in vitro release profile displayed that the developed bioflavanol/clinoptilolite microcarrier system provided sustained catechin in vitro release behaviour without an initial burst effect. Thus, the results from the present study are essential for the design and development of innovative catechin-CLS-5 microcarrier systems for application in human and veterinary medicine.  相似文献   

14.
Uniform chitosan microspheres have been fabricated and weakly crosslinked for potential applications in colon-specific drug delivery. The effects of microsphere size, crosslinking density and electrostatic interactions between the drug and chitosan on drug release were studied, employing model drugs of different acidities. When the drug was basic, all chitosan spheres exhibited 100% release within 30 min. As the acidity of the drug increased, the release slowed down and depended on the crosslinking density and microsphere size. The release of weakly acidic drug was most suppressed for large spheres (35-38 microm), while the small spheres (23-25 microm) with higher crosslinking exhibited the most retention of highly acidic drug, indicating that they are a promising candidate for colon-specific delivery.  相似文献   

15.
Chitosan microspheres were prepared by an emulsion crosslinking method using glutaraldehyde as the cross-linker. Two auxins were dissolved in ethyl benzoate and encapsulated into the microspheres. The best encapsulation efficiency for naphthalene-1-acetic acid and indole-3-acetic acid, respectively, are 68% and 56% and depends on the selection of the appropriate extent of crosslinker, crosslinking time, and the ratio of the oil/water phase. The microspheres were characterized by FTIR spectroscopy. Differential scanning calorimetry was applied to study the thermal stabilities, and scanning electron microscopy to investigate the morphology of the loaded microspheres. In-vitro release studies performed in buffered aqueous methanol at pH 7.4 indicated that the cumulative release rate of the auxins from the particles reaches a maximum (60%) after about 120?h. The release rate in water is higher than the one in methanol. Based on data for the correlation coefficient it is concluded that the drug release is controlled by a diffusion mechanism that follows a super Case-II transport scheme.
Figure
In this work, two auxins, e.g., naphthalene-1-acetic acid and indole-3-acetic acid, were encapsulated into chitosan microspheres by an emulsion crosslinking method. Furthermore, the encapsulation efficiency and the in-vitro release were discussed in detail indicating that the drug release was controlled by a diffusion mechanism that followed a super Case-II transport scheme  相似文献   

16.
Poly(ethylene glycol) dimethacrylate (PEGDMA) and methacrylic acid (MAA) based micro and nanoparticles were prepared and evaluated as a carrier for oral delivery of insulin. PEGDMA was synthesized by esterification reaction of the PEG4000 with MAA in the presence of an acid catalyst. Particles of different size were prepared by emulsion polymerization reaction using different concentration of sodium lauryl sulphate (SLS) as an emulsifying agent. Synthesized copolymeric particle were characterized by attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR), scanning electron microscopy, and acid value. The mean particle diameter of the polymeric micro and nanoparticles at various physiologically relevant pH values was measured using dynamic light scattering. Insulin loading efficiency of the particles was found to be directly proportional to the particle size and inversely proportional to the acid value of the particles. In vitro insulin release studies from various insulin loaded particles were performed by simulating the gastrointestinal tract conditions using HPLC. At pH 2.5, the release of insulin from polymeric particles was observed in the range of 5–8% while a significant higher release (20–35%) was observed at pH 7.4 during first 15 min of in vitro release. Largest size copolymeric particles of 8.3 µm also showed the highest efficiency to reduce the blood glucose level in diabetic rabbits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this work was to formulate the lorazepam loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles by optimization of different preparation variables using 23 factorial design. The effect of three independent factors, the amount of polymer, concentration of the stabilizer and volume of organic solvent was investigated on two dependent responses, i.e., particle size and % drug entrapment efficiency. By using PLGA as polymer, PVA as a stabilizer and dimethyl sulfoxide as organic solvent lorazepam loaded PLGA nanoparticles were successfully developed through modified nanoprecipitation method. FTIR and DSC studies were carried out to examine the interaction between the excipients used and to explore the nature of the drug, the formulation and the nature of drug in the formulations. These nanoparticles were characterized for particle size, shape, zeta potential, % drug entrapment efficiency, % process yield and in vitro drug release behavior. In vitro evaluation showed particles size between 161.0 ± 5.4 and 231.9 ± 4.9 nm, % drug entrapment efficiency of formulations was in the range of 60.43 ± 5.8 to 75.40 ± 1.5, % process yield at 68.34 ± 2.3 to 81.55 ± 1.3 was achieved and in vitro drug release for these formulations was in the range of 49.2 to 54.6%. Different kinetics models, such as zero order, first order, Higuchi model, Hixson-Crowell model and Korsmeyer- Peppas model were used to analyze the in vitro drug release data. Preferred formulation showed particle size of 161.0 ± 5.4 nm, PDI as 0.367 ± 0.014,–25.2 mV zeta potential, drug entrapment efficiency as 64.58 ± 3.6% and 72.48 ± 2.5% process yield. TEM results showed that these nanoparticles were spherical in shape, and follow the Korsmeyer-Peppas model with a release exponent value of n = 0.658.  相似文献   

18.
Polyelectrolyte complexes (PECs) have been the focus of an expanding number of studies for their wide use. This study investigated the characteristics and biodegradation of chitosan-alginate PECs prepared by freeze-drying a precipitate from sufficient mixtures of the two polymers. The analyses of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) suggested that the partial protonated amine groups of chitosan reacted with the carboxylate groups of alginate and thus strong PECs were formed. After incubating in lysozyme solution, the PECs showed high ability of enzyme adsorption, and low degradation rate in spite of different degrees of deacetylation of chitosan, due to the strong interaction between chitosan and alginate and the hindrance of closely adsorbed lysozyme.  相似文献   

19.
The aim of this study was to establish a freeze-drying process for melatonin-loaded lecithin/chitosan nanoparticles (NPs) to preserve their chemical and physical stability for a longer time period that what is possible in an aqueous suspension. Glucose and trehalose were investigated as potential excipients during freeze-drying of NP suspensions. Lecithin/chitosan NPs were characterised by mean diameter and zeta potential, ranging between 117.4 and 328.5 nm and 6.7 and 30.2 mV, respectively, depending on the lecithin type and chitosan content in the preparation. Melatonin loadings were up to 7.1%. For all lecithin/chitosan NPs, no notable differences in the mean particle size, size distribution, zeta potential or melatonin content were observed before or immediately after the lyophilisation process or after 7 months of storage at 4 °C. The residual moisture contents of lyophilisates with glucose and trehalose immediately after the lyophilisation process varied between 4.0-4.8% and 2.4-3.0%, respectively. All lecithin/chitosan NPs had a fully amorphous nature after the freeze-drying process, as indicated by modulated differential scanning calorimetry. NP lyophilisates with glucose had a low glass transition temperature (ca. 5 °C), confirming that lyophilisation with glucose as a cryoprotectant was not appropriate. All lyophilisates with trehalose had a glass transition temperature above the room temperature, allowing formation of the cake without a collapse of the structure, which was capable of preserving its characteristics and appearance following 7 months of storage at 4 °C.  相似文献   

20.
The objective of the present study was to prepare clarithromycin (CLR) loaded biodegradable nanoparticles (NPS), with a view to investigate its physicochemical properties and anti-bacterial activity. PLGA was used as a biodegradable polymer and the particles were prepared by nano-precipitation method in 3 different drugs to polymer ratios. Evaluation of the physicochemical properties of the prepared nanoparticles was performed using encapsulation efficiency, nanoparticle production yield, dissolution studies, particle size analysis, zeta potential determination, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray powder diffractometry. The antimicrobial activity against Staphylococcus aureus was determined using serial dilution technique to achieve the minimum inhibitory concentration (MIC) of NPs. The particles were between 189 and 280 nm in size with narrow size distribution, spherical shape and 57.4-80.2% entrapment efficiency. Zeta potential of the NPs was fairly negative. The DSC thermograms and X-ray diffraction patterns revealed reduced drug crystallinity in the NPs. FT-IR spectroscopy demonstrated possible noncovalent interactions between the drug and polymer. In vitro release study showed an initial burst followed by a plateau during a period of 24 h. The NPs were more effective than intact CLR against S. aureus so that the former showed equal antibacterial effect at 1/8 concentration of the intact drug. In conclusion, the prepared CLR nanoparticles are more potent against S. aureus with improved MICs and appropriate physicochemical properties that may be useful for other susceptible microorganisms and could be an appropriate candidate for intravenous, ocular and oral and topical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号