首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrophilic silica particles need to be hydrophobized to be encapsulated in a polymeric environment, which can be achieved by different methods. We report on the relationship between different hydrophobization techniques of silica and the final structure of poly(methyl methacrylate)/silica hybrid nanoparticles obtained by miniemulsion polymerization. Hydrophobization by cetyltrimethylammonium chloride (CTMA-Cl) uses the ionic interaction between the positively charged ammonium salt and the negatively charged silica surface, as shown by isothermal titration calorimetry. In this case, the interaction between polymer and silica surface needs to be enhanced, so 4-vinylpyridine (4-VP) was used as a co-monomer. Alternatively, the condensation reactions of 3-methacryloxypropyltrimethoxysilane (MPS) and octadecyltrimethoxysilane (ODTMS) were used to provide a covalent bond to the silica surface. The condensation reaction of the trimethoxysilane groups onto the silica surface was proven by Fourier transform infrared spectroscopy and thermogravimetric analysis. Hybrid nanoparticles were successfully formed with silica particles functionalized with the different functionalization agents. However, the structure of the resulting hybrid particles (i.e., the distribution of the silica particles within the polymer matrix) depends on the agent. The MPS-functionalized silica particles copolymerize with poly(methyl methacrylate), leading to a fixation of the silica particles inside the polymer and to a homogeneous distribution. The CTMA-Cl- and ODTMS-functionalized silica particles cannot copolymerize, but aggregate at the interface, leading to a Janus-like structure.  相似文献   

2.
A novel method to prepare organic/inorganic composite particles, i.e. poly(methyl methacrylate)/CaCO3/SiO2 three-component composite particles, using emulsion polymerization of methyl methacrylate with sodium lauryl sulfate as a surfactant in an aqueous medium was reported. CaCO3/SiO2 two-component inorganic composite particles were obtained firstly by the reaction between Na2CO3 and CaCl2 in porous silica (submicrometer size) aqueous sol and the specific surface area of the particles was measured by the Brunauer–Emmett–Teller (BET) method. The results show that the BET specific surface area of the CaCO3/SiO2 composite particle is much smaller than that of the silica particle, indicating that CaCO3 particles were adsorbed by porous silica and that two-component inorganic composite particles were formed. Before copolymerization with methyl methacrylate, the inorganic composite particles were coated with a modifying agent through covalent attachment. The chemical structures of the poly(methyl methacrylate)/CaCO3/SiO2 composite particles obtained were characterized by Fourier transform IR spectroscopy and thermogravimetric analysis. The results show that the surface of the modified inorganic particles is grafted by the methyl methacrylate molecules and that the grafting percentage is about 15.2%.  相似文献   

3.
Changes of particle array structure with particle volume fraction during immobilization of colloidal crystals, formed by poly(methyl methacrylate)-grafted silica in acetonitrile, were investigated. Immobilization of colloidal crystals formed in acetonitrile was carried out by two-step photo-radical copolymerization of methyl methacrylate and ethylene dimethacrylate to make organogel, followed by solidification after exchanging the solvent with methyl methacrylate. Crystallite size in colloidal crystals formed in acetonitrile was mostly unchanged with particle volume fraction in the range of 0.11–0.18, while the size and number of single crystals decreased during gelation. Disordering in particle array in immobilized colloidal crystals in gel and poly(methyl methacrylate) matrix was observed to decrease with increasing particle volume fraction less than 0.18 due to strong electrostatic repulsion between particles.  相似文献   

4.
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core–shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core–shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 °C for 2.5 h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA–silica hybrid shell. The resulting hybrid silica core–shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core–shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA–silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core–shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.  相似文献   

5.
In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.  相似文献   

6.

Nanocomposite latex particles, with a silica nanoparticle as core and crosslinked poly(tert‐butylmethacrylate) as shell, were prepared in this work. Silica nanoparticles were first synthesized by a sol‐gel process, and then modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) to graft C?C groups on their surfaces. The MPS‐modified silica nanoparticles were characterized by elemental analysis, FTIR, and 29Si NMR and 13C‐NMR spectroscopy; the results showed that the C?C groups were successfully grafted on the surface of the silica nanoparticles and the grafted substance was mostly the oligomer formed by the hydrolysis and condensation reaction of MPS. Silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were prepared via seed emulsion polymerization using the MPS‐modified silica nanoparticle as seed, tert‐butylmethacrylate as monomer and ethyleneglycol dimethacrylate as crosslinker. Their core/shell nanocomposite structure and chemical composition were characterized by means of TEM and FTIR, respectively, and the results indicated that silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were obtained.  相似文献   

7.
纳米SiO_2/聚丙烯酸酯复合乳液的制备与表征   总被引:6,自引:0,他引:6  
根据核壳乳液聚合理论,以经过硅烷偶联剂表面改性的纳米SiO2为种子,采用适当的乳液聚合工艺,制备了纳米SiO2/聚丙烯酸酯复合乳液,并表征了其性能.结果表明,纳米SiO2经过改性后,硅烷偶联剂接枝在其表面;以其为种子制备的复合乳液具有核壳结构,其热稳定性有所提高.  相似文献   

8.
Colloidal crystals formed by polymer-grafted silica particles were immobilized by a stepwise procedure consisting of gelation by radical copolymerization followed by solidification by ring-opening radical polymerization. In the first step, the poly(methyl methacrylate) (PMMA)-grafted silica colloidal crystal suspension was incorporated into the gel without altering the crystal structure by copolymerization of cross-linker, 1,2-dimethylacryloyloxyethane (DME) and methyl methacrylate (MMA). In the second step, ring-opening radical polymerization was performed after substituting the solvent with vinylidene-1,3-dioxolane. By this two-step procedure, the silica particle array of colloidal crystals was immobilized and made into durable material.  相似文献   

9.
A novel yet versatile approach is described for surface-initiated living radical polymerization (SI-LRP) from silica particles (SiPs). Monodisperse SiPs were surface-modified with a newly designed surface-fixable initiator (BPEGE) having three components: a triethoxysilane moiety, a poly(ethylene glycol) (PEG) unit, and an initiation site for atom transfer radical polymerization (ATRP) in the form of a 2-bromoisobutyryl group. The surface-initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the BPEGE-fixed SiPs. The polymerization proceeded in a living manner, producing SiPs coated with well-defined poly(MMA) of a target molecular weight with a graft density as high as 0.5 chains/nm2. Thanks to the amphiphilic property of PEG, the system was successfully applied for SI-ATRP of PEG methacrylate and sodium p-styrenesulfonate in aqueous media in which the BPEGE-fixed SiPs were highly dispersed without causing any aggregations. The formation of colloidal crystals with the polymer brush-afforded SiPs demonstrated the high uniformity and perfect dispersibility of the hybrid particles.  相似文献   

10.
Grafting of poly(methyl methacrylate) from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) particles were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as the stabilizer. Chloromethylated PDVB was used as initiating core sites for subsequent ATRP of methyl methacrylate with CuBr/bpy as catalyst system. It was found that poly(methyl methacrylate) was grafted not only from the particle surfaces but also from within a thin shell layer, leading to particles size increases from 2.38-3.00μm with a core-shell structure particles. The grafted core-shell particles were characterized with FTIR, SEM, DSC.  相似文献   

11.
Surface properties of poly(cyclopentadiene)–silica hybrid particles (PCPD–silica) were studied by means of XPS and electrokinetic measurements. The surfaces of PCPD–silica particles exhibit two different areas with different properties: bare silica holes and PCPD patches. The PCPD chains contain different functional groups such as alcohol and carbonyl groups that were identified by XPS. The PCPD chains are grafted covalently onto the silica surface via Si–O–C bonds created by the reaction of silanol groups and active PCPD chains. The amount of Si–O–C was examinated by means of XPS. The Brønsted acidity of the residual silanol groups was determined by means of electro-kinetic measurements. It was found that the pK a values of the residual silanol groups increase with increasing polymer content on the particle surface. The surface acceptor strengths of the hybrid particles in non-aqueous liquids were investigated by the solvatochromic indicator bis(1,10-phenanthroline)-cis-dicyano-iron-II in 1,2-dichloroethane.  相似文献   

12.
The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.  相似文献   

13.
Monodisperse silica particles (SiPs) were surface-modified with a newly designed silane coupling agent comprising a triethoxysilane and an alkyl halide, namely, 6-(triethoxysilyl)hexyl 2-bromopropionate, which was further treated with potassium O-ethyl dithiocarbonate (PEX) to immobilize xanthate molecules on the particle surfaces. Surface-initiated macromolecular design via interchange of xanthates (MADIX) polymerization of vinyl acetate (VAc) was conducted with the xanthate-functionalized SiPs. The polymerization was well controlled and produced SiPs coated with poly(vinyl acetate) (PVAc) with a well-defined target molar mass and a graft density of about 0.2 chains nm−2. Dynamic light scattering and TEM measurements revealed that the hybrid particles were highly dispersible in good solvents without any aggregation. The PVAc brushes were hydrolyzed with hydrochloric acid to produce poly(vinyl alcohol) brushes on the SiP surfaces. In addition, the number of xanthate molecules introduced on the SiP surfaces could be successfully controlled by adjusting the concentration of PEX. Thus, the SiPs have two functionalities: xanthates able to act as a MADIX chain-transfer agent and alkyl bromide initiation sites for atom transfer radical polymerization (ATRP). By using these unique bifunctional particles, mixed polymer brushes were constructed on the SiPs by MADIX of VAc followed by ATRP of styrene or methyl methacrylate.  相似文献   

14.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

15.
In a dispersion polymerization, the monomer is miscible with the reaction medium, while the resulting polymer is insoluble under the same conditions. The macroscopic precipitation of the polymer is prevented by a steric stabilizer. Methyl methacrylate was polymerized in decane in presence of polystyrene-block-poly(ethylene-co-propylene) and spherical dispersion particles of poly(methyl methacrylate) (PMMA) were obtained. The static light scattering yielded molar masses of particles in the range 4 × 107 to 7 × 109 g mol−1. Dynamic light scattering provided the hydrodynamic radii from 60 to 190 nm and also information on the non-uniformity of the particles. The relations between the characteristics of the dispersion particles (concentration of components, particle mass and dimensions, molar mass of PMMA chains, surface density of stabilizing chains, etc.) were looked for. The kinetics of polymerization seems to be only little affected by the colloidal character of the system.  相似文献   

16.
The composite particles with core/shell structure resulting from the combination of silica seed and hydrophobic copolymer (dodecafluoroheptyl methacrylate (DFMA), gamma-methacryloxypropyltriisopropoxidesilane (MAPTIPS), methyl methacrylate, butyl acrylate) were synthesized by emulsion polymerization. The amount of the silica seeds, concentration of reactive surfactant, as well as the addition of DFMA and MAPTIPS, have strong influences on the morphology of composite particles. It has been shown that it would be possible to produce stable organic/inorganic composite particles with inhomogeneous core/shell structure encapsulated by hydrophobic fluorinated acrylate even though using unmodified silica particles and admixture of anionic and nonionic surfactants. However, there was an obvious difference on the morphologies of core-shell structure whether the DFMA and MAPTIPS were added or not. It was concluded that two kinds of polymerization approaches might coexist in the presence of DFMA and MAPTIPS for raw silica. One clear advantage of this process is that there is only one silica bead for each composite particle. This kind of stable core-shell structural hybrid latex is useful for preparing high performance hydrophobic coating.  相似文献   

17.
The surface grafting onto ultrafine silica via reverse ATRP of methyl methacrylate initiated by peroxide groups introduced onto the surface and conventional ATRP of Styrene initiated by the hybrid nanoparticles were investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polymer layer. The polymerization was closely controlled in solution at quite low temperature such as 70 °C. In both cases, linear kinetic plots, linear plots of molecular weight (Mn) versus conversion, in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (Mw/Mn) for the grafted polymer samples were observed. Hydrolysis of silica cores by hydrofluoric acid treatment enabled characterization of cleaved polymer using GPC. Ultrathin films of hybrid nanoparticles were examined using TEM and AFM.  相似文献   

18.
Silica/poly(methyl methacrylate) nanocomposite latex particles have been synthesized by emulsion polymerization of methyl methacrylate using a nonionic surfactant: nonylphenol poly(oxyethylene) and three different initiators, namely: 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA), potassium persulfate (KPS) and azobis(isobutyronitrile) (AIBN), being cationic, anionic and nonionic, respectively. A silica sol with an average diameter of 68 nm was used as the seed. The polymerization reaction was conducted under alkaline conditions in order to evaluate the role of the surface charge of the hydrophilic silica on the coating reaction. AIBA was found to be adsorbed on the silica surface owing to electrostatic interactions of the amidine function of the cationic initiator with the silanolate groups of the oxide surface, while the anionic and the nonionic initiators did not adsorb on silica under the same conditions. Nonetheless, whatever the nature of the initiator, polymerization took place on the silica particles as evidenced by transmission electron microscopy. The extent of interaction between the inorganic surface and the polymer particles was quantified by means of ultracentrifugation and a material balance. As much as 65% by weight of the total polymer formed was found to be present at the silica surface using AIBA, while only 40% for KPS and 25% for AIBN was found to cover the silica particles under alkaline conditions. We demonstrate that by using a cationic initiator and by controlling the pH of the suspension it is possible to significantly decrease the amount of free polymer. Coating of the silica particles took place through a kind of in situ heterocoagulation mechanism. Received: 8 December 2000 Accepted: 22 February 2001  相似文献   

19.
Monodisperse polar gradient particles were synthesized via a three‐step emulsion polymerization using poly(butyl acrylate‐methyl methacrylate‐methacrylic acid‐ethylene glycol dimethacrylate) (P(BA‐MMA‐MAA‐EGDMA)) as core, poly(methyl methacrylate‐methacrylic acid‐styrene) (P(St‐MMA‐MAA)) as interlayer and polystyrene (PSt) as shell. The particle growth and encapsulation in each emulsion polymerization step were followed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and conductometric titration. Results indicated that the feeding mode and the interlayer were essential to prepare the polar gradient latex particles with hydrophilic core and hydrophobic shell. The morphologies of the two‐layer core/interlayer and three‐layer core/interlayer/shell particles were observed in TEM micrographs, and the sequential encapsulations of the carboxyl‐containing core and the core/interlayer particles were confirmed by an increase in the particle size as well as an increase in the buried carboxyl percentage.  相似文献   

20.
Silicon substrate surface and silica particle surface were modified with five kinds of polymers, poly(2-methoxyethyl methacrylate) (pMEMA), poly(2-hydroxyethyl methacrylate) (pHEMA), poly(acrylamide) (pAAm), poly(methyl methacrylate) (pMMA), and poly(styrene) (pSt), using a combined polymerization of surface-initiated polymerization that gives dense polymer chain layers and atom transfer radical polymerization (ATRP) that yields polymers with a narrow molecular weight distribution. Measurements of water contact angle and polymer chain amount on the modified silicon substrate surface and adsorption amounts of proteins (albumin and fibrinogen) on the modified silica particle surface revealed that the amount of polymer on the modified surface greatly affects the suppression of protein adsorption on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号