首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum complexes supported by a sulfonamide/Shiff base ligand are described. Reaction of AlMe3 with 1 equiv of ligand 1, gives methyl aluminum complex 2, and aluminum complex 3 is prepared by the reaction of complex 2 with 1 equiv of benzyl alcohol. Experimental results show that complex 3 is an efficient initiator for the ring-opening polymerization of lactide in controlled fashion, yielding polymers with expectative molecular weight and low polydispersity indexes. Furthermore, the complex 3 has isotactic selectivity for the ring-opening polymerization of rac-lactide.  相似文献   

2.
Two acyclic Schiff-base ligands, bis-5,5′-(1,3-propanediyldiimino)-2,2-dimethyl-4-hexene-3-one and bis-5,5′-(1,3-ethanediyldiimino)-2,2-dimethyl-4-hexene-3-one, were used to complex homoleptic triethylaluminum and tris[bis(trimethylsilyl)amino]aluminum, respectively. The acid–base reactions proceeded in excellent yields with elimination of ethane or bis(trimethylsilyl)amine during in situ deprotonation of the protio Schiff-base. The colorless aluminum complexes crystallized from n-pentane and were characterized by standard methods including single crystal X-ray diffraction. Polymerization of racemic lactide, with addition of alcohol, yielded PLA with narrow polydispersities but low molecular weights.  相似文献   

3.
A series of metal complexes containing potentially tetradentate phenoxyamine ligands is described. The ligands are found to bind to main-group metals and first-row transition-metal centres with variable denticity depending upon the requirements of the particular metal centre. Bidentate [Al(III)], tridentate [Mg(II), Ca(II), Zn(II)] and tetradentate [K(I), Cr(III), Fe(II), Co(II)] binding modes have been established unambiguously through single-crystal X-ray structure determinations.  相似文献   

4.
A series of magnesium, zinc, and calcium monoalkyl or monoamide complexes containing tridentate nitrogen ligands, CH3C(2,6-(iPr)2C6H3N)CHC(CH3) (NCH2CH2-D) (D = NMe2, N((CH2CH2)2CH2)), have been synthesized, and six of which were characterized by single-crystal X-ray diffraction. The X-ray diffraction results show that the metal complexes are all solvent-free monomers and the pendant arm D bonds to the metal ion. These metal complexes are highly active for the ring-opening polymerization of rac-lactide and give preference for heterotactic polylactide.  相似文献   

5.
Using tetradentate, dianionic ligands, several new rhodium complexes have been prepared. Some of these diamine-bis(phenolate) compounds, are active for C-H activation of benzene. These complexes are air and thermally stable. All four complexes were characterized by X-ray diffraction.  相似文献   

6.
Treatment of yttrium tris(alkyl)s, Y(CH2SiMe3)3(THF)2, by equimolar H(C5Me4)SiMe3(HCp′) and indene (Ind-H) afforded (η5-Cp′)Y(CH2SiMe3)2(THF) (1) and (η5-Ind)Y(CH2SiMe3)2(THF) (2) via alkane elimination, respectively. Complex 1 reacted with methoxyamino phenols, 4,6-(CH3)2-2-[(MeOCH2CH2)2-NCH2]-C6H2-OH (HL1) and 4,6-(CMe3)2-2-[(MeOCH2CH2)2-NCH2]-C6H2-OH (HL2) gave mixed ligands supported alkyl complexes [(η5-Cp′)(L)]Y(CH2SiMe3) (3: L = L1; 4: L = L2). Whilst, complex 2 was treated with HL2 to yield [(η5-Ind)(L2)]Y(CH2SiMe3) (5). The molecular structures of 3 and 5 were confirmed by X-ray diffraction to be mono(alkyl)s of THF-free, adopting pyramidal and tetragonal-bipyramidal geometry, respectively. Complexes 3 and 5 were high active initiators for the ring-opening polymerization of l-lactide to give isotactic polylactide with high molecular weight and narrow to moderate polydispersity.  相似文献   

7.
A series of new zirconium complexes bearing bis(phenoxyketimine) ligands, bis((3,5-di-tert-butyl-C6H2-2-O)R1CN (2-R2-C6H4))ZrCl2 {R1 = Me, R2 = H (2a); R1 = Et, R2 = H (2b); R1 = Ph, R2 = H (2c); R1 = 2-Me-Ph, R2 = H (2d); R1 = 2-F-Ph, R2 = H (2e); R1 = 2-Cl-Ph, R2 = H (2f); R1 = 2-Br-Ph, R2 = H (2g); R1 = Ph, R2 = Me (2h); R1 = Ph, R2 = F (2i)}, have been prepared, characterized and tested as catalyst precursors for ethylene polymerization. Crystal structure analysis reveals that complex 2c has a six coordinate center in a distorted octahedral geometry with trans-O, cis-N, cis-Cl arrangement which possesses approximate C2 symmetry. When activated with methylaluminoxane (MAO), complexes 2a-2i exhibited high ethylene polymerization activities of 106-108 g PE (mol M h)−1. Compared with the bis(phenoxyimine) zirconium analogues bis((3,5-di-tert-butyl-C6H2-2-O)CHNC6H5)ZrCl2 (3), the introduction of substituent on the carbon atom of the imine double bond enhanced the catalytic activity and molecular weight of prepared polyethylene. Especially, when the H atom at the carbon atom of the imine double bond was replaced by 2-fluoro-phenyl with strong electronic-withdrawing property, complex 2e displayed the highest catalytic activity, and the polyethylene obtained possessed the highest molecular weight and melt point.  相似文献   

8.
Octahedral iron(II) and cobalt(II) based complexes, [N,N′-di(quinoline-2-methylene)-1,2-phenylenediimine]MCl2, and [N,N′-di(quinoline-2-methylene)diiminocyclohexane]MCl2 (M = Co and Fe), bearing tetradentate diimino nitrogen ligands were prepared and used in tert-butylacrylate (t-BA) polymerization after activation with methylaluminoxane (MAO). In general, polyacrylates with high molar mass and narrow molar mass distribution (MMD ≈ 2) were obtained. In order to understand the influence of the ligand on the polymerization process, polymerization behaviour of the hexacoordinated complexes was compared to pentacoordinated iron(II) and cobalt(II) complexes, 2,6-bis[1-(cyclohexylimido)ethyl]pyridine MCl2 (M = Co and Fe), bearing tridentate diimine nitrogen ligands as well as to free iron(II) chloride. The ability of the MAO activated hexacoordinated complexes to polymerize methylacrylate (MA) and methyl methacrylate (MMA) was also considered, but reduced activities as well as lower molar mass polymers were obtained than in the experiments with t-BA.  相似文献   

9.
Two half-sandwich rhodium complexes with sulfur or oxygen functionalized cyclopentadienyl ligands [η5-C5H4(CH2)2SCH2CH3]RhI23, {[η5-C5H4(CH2)2OCH3]RhI2}24 have been synthesized and characterized by IR, 1H-NMR spectra and Elemental analyses. The molecular structures of complexes 3 and 4 have been determined by X-ray crystallographic analysis. Complexes 3, 4 with a pendent arm on cyclopentadienyl ligand have been tested as catalysts for ethylene and norbornene polymerization in the presence of MAO. Complexes 3 and 4 kept high activities of ca. 106 g PE mol−1 Rh h−1 with morderate molecular weight (Mw ≈ 105 g mol−1) of polyethylene in the ethylene polymerization. Catalytic activities, molecular weights of polyethylene have been investigated under the various reaction conditions.  相似文献   

10.
A new family of aluminum complexes bearing tetradentate bis(aminophenoxide) ligands is reported and shown to initiate the living ring-opening polymerization of rac-lactide. The microstructures of the polylactide products are found to be highly dependent upon the ancillary ligand substituents, ranging from highly isotactic (Pm = 0.79) to very highly heterotactic (Pr = 0.96).  相似文献   

11.
Synthesis of new titanium and zirconium dichloro complexes bearing malonate-based enaminoketonato (N,O) ligand is described. NMR studies of the catalyst precursors reveal that synthesized complexes have different configurational isomers in solution state and that they undergo structural change within NMR timescale. After MAO activation complexes exhibited low to moderate activities in ethylene polymerization producing bi- or multimodal polyethylenes.  相似文献   

12.
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium complex 1 supported by flexible amino-imino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL2 with equimolar Ln(CH2SiMe3)3(THF)2, HL2 was deprotonated by the metal alkyl and its imino CN group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttrium complex 3 without alkyl moiety was isolated when the molar ratio of HL2 to Y(CH2SiMe3)3(THF)2 increased to 2:1. Reaction of steric phosphino β-ketoiminato ligand HL3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses. All alkyl complexes exhibited high activity toward the ring-opening polymerization of l-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.  相似文献   

13.
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)2 (HL1) and Lu(CH2SiMe3)3(THF)2 at room temperature for 3 h generated mono(alkyl) complex (L1)2Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)2 (HL2) with Lu(CH2SiMe3)3(THF)2 afforded (L2)2Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L2)3Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)2 (HL3) swiftly reacted with Ln(CH2SiMe3)3(THF)2 at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L3Ln(CH2SiMe3)2(THF)n (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)4], was able to catalyze the polymerization of ethylene to afford linear polyethylene.  相似文献   

14.
A series of cobalt(II) complexes having terpyridine derivatives such as 2,2:6,2″-terpyridine (1), 4,4,4″-tBu3-2,2:6,2″-terpyridine (2), 5,5″-Me2-2,2:6,2″-terpyridine (3), 6,6″-Me2-2,2:6,2″-terpyridine (4) and 6,6″-(3,5-Me2C6H3)2-2,2:6,2″-terpyridine (5) was synthesized. The structures of 1, 3, and 4 were confirmed by X-ray crystallography. The coordination sphere around the cobalt center in 1 can be described as pseudo square pyramidal. On the other hand, complex 4 has pseudo trigonal bipyramidal structure. Upon activation with d-MAO (dried-methylaluminoxane), these complexes showed high activities for the polymerization of norbornene (NBE). In particular, polymerization of NBE with 4/d-MAO system at room temperature resulted in quantitative yield within several hours to give the polymers with relatively narrow molecular weight distributions and controlled molecular weight. The polymerizations of NBE with these cobalt catalyst systems proceeded in vinyl addition polymerization, which was confirmed by 1H NMR spectra of the resulting polymers.  相似文献   

15.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

16.
Mixed ketoiminate/ketoimine/pentamethylcyclopentadienyl (Cp*) complex of zirconium, [(η5-Cp*){CH3C(O)CHC(NHR)CH3}{CH3C(O)CHC(NR)CH3}ZrCl2] (R=4-CF3Ph) (3) has been prepared in high yield by the reaction of one equivalent of 4-CF3-phenyl-β-ketoimine (1a) and one equivalent of lithium 4-CF3-phenyl-β-ketoiminate (2a) with one equivalent of Cp*ZrCl3 in Et2O. Bis(ketoiminate)zirconium dichloride complexes, 4 and 6, have been also prepared in high yield by the reaction of amine elimination of ketoimine ligands, respectively 1a and 1b, with Zr(NMe2)4 and followed by chlorination reaction with TMSCl. The X-ray crystallography reveals that the compound 3 is based on distorted octahedral geometry containing a ketoimine and a ketoiminate. The ketoiminate ligand coordinates to the zirconium as a bidentate ligand, leaving the metal center coordinatively unsaturated and thus leading to an additional binding of a ketoimine ligand to the metal to stabilize the complex 3. The zirconium complexes 3, 4 and 6 provide the moderate activity for the polymerization of ethylene in the presence of MMAO cocatalyst. Low molecular weight and high density polyethylene was obtained.  相似文献   

17.
Copper complexes [Cu(Ln)2] 1-4 bearing N,O-chelating β-ketoamine ligands Ln based on condensation products of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with aniline (L1), α-naphthylamine (L2), o-methylaniline (L3), and p-nitroaniline (L4), respectively, were synthesized and characterized by IR, 1H NMR and X-ray crystallography (except 2). They were shown to catalyze the vinyl polymerization of norbornene when activated by methylaluminoxane (MAO). Both steric and electronic effects are important and influential factors contributing to the catalytic activity of the complexes with the order of 2 > 4 > 3 > 1.  相似文献   

18.
Styrene polymerization is investigated with neutral and cationic Ni(II) complexes, i.e. Ni(bipy)Me2, 1, Ni(bipy)Br2, 2, Ni(phen)Br2, 3, or Ni(Me2phen)Br2, 4, Ni(acac)2, 5, (bipy = 2,2′-bipyridine, phen = phenanthroline, Me2phen = 2,9-dimethyl-1,10-phenanthroline, acac = acetylacetonate), activated by [NHMe2Ph][B(C6F5)4] or B(C6F5)3 as cocatalysts, in the presence of AlMe3. The influence on the polystyrene features and the reaction kinetics of the nickel complex and boron activator, the Al/Ni or B/Ni molar ratios as well as the monomer concentration are studied. Catalytic systems derived from 2, 3 or 5 and [NHMe2Ph][B(C6F5)4] at a Ni:B:Al ratio of 1:1:5 are the most efficient at room temperature.  相似文献   

19.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

20.
A library of N-tripodal ligands, based on a central nitrogen atom connected to three different functionalized arms, was investigated via a parallel approach for the polymerization of methyl-methacrylate (MMA) in presence of late transition metal salts. Copper salts CuCl2 and Cu(OAc)2 in combination with N-(2-furanylmethyl)-N-(1-3,5-dimethyl-1H-pyrazolylmethyl)-N- (phenylmethyl)amine were detected as efficient catalysts for the syndiotactic polymerization of MMA ([rr] up to 78%). Kinetic studies and X-ray structures of the best catalysts were reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号