共查询到20条相似文献,搜索用时 15 毫秒
1.
A tetrafunctional epoxy monomer, N,N,N′-N′-tetraglycidyl-4,4′-diaminodiphenyl methane (TGDDM), has demonstrated to be a highly efficient reactive compatibilizer in compatibilizing the immiscible and incompatible polymer blends of polyamide-6 (PA6) and poly(2,6-dimethyl-1,4-phenylene ether) (PPE). This epoxy coupler can react with both PA6 and PPE to form various PA6-co-TGDDM-co-PPE mixed copolymers. These interfacially formed PA6-co-TGDDM-co-PPE copolymers tend to anchor along the interface to reduce the interfacial tension and result in finer phase domains and enhanced interfacial adhesion. A simple one-step melt blending has demonstrated to be more efficient in producing a better compatibilized PA6/PPE blend than a two-step sequential blending. The mechanical property improvement of the compatibilized blend over the uncompatibilized counterpart is very drastic, by considering the addition of a very small amount, a few fractions of 1%, of this epoxy coupling agent. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1805–1819, 1998 相似文献
2.
A. Gonzlez-Montiel H. Keskkula D. R. Paul 《Journal of Polymer Science.Polymer Physics》1995,33(12):1751-1767
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc. 相似文献
3.
Poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6 (PPO/PA6) (50/50 w) blends filled with epoxycyclohexyl polyhedral oligomeric silsesquioxane (POSS) were prepared via melt-mixing. The reactions between POSS and PPO/PA6 blends were studied by Fourier transform infrared spectroscopy, end group and gel content tests. The morphology of PPO/PA6/POSS composites was observed by field emission scanning electron microscope and transmission electron microscope. As a chain extender and a crosslinking agent for PA6, POSS largely affected the morphology of the composites, which was mainly dependent on the melt-viscosity ratio and interfacial tension between the components. With increasing POSS content from 2 to 4 phr, the morphology of the composites transformed from droplet/matrix to co-continuous morphology. The PPO/PA6/POSS composites with co-continuous morphology had the better mechanical properties than those with droplet/matrix morphology. Dynamic mechanical thermal analysis showed that the addition of POSS increased the Tg of PA6. 相似文献
4.
Chr. Yordanov 《European Polymer Journal》2005,41(3):527-534
The paper presents differential scanning calorimetry and electron microscopy of the fractionated crystallization and polydispersity of the dispersed PA6 phase in compatibilized LDPE/PA6 75/25 w/w blends. The compatibilizers used were (i) an acrylic acid functionalized polyethylene, Escor 5001 (EAA); (ii) an ethylene-glycidylmethacrylate copolymer, Lotader GMA AX8840 (EGMA); (iii) a polystyrene-poly(ethylene-butylene)-polystyrene triblock copolymer comprising 2 wt.% maleic anhydride grafts, Kraton FG 1901X (SEBS-g-MA). The compatibilizer SEBS-g-MA has the strongest reduction effect upon the size of PA-6 droplets. Its implementation provides the best fractionated crystallization. The fractionated crystallization has not been observed for the blend compatibilized with EGMA. The results show that the degree of compatibilization could be evaluated qualitatively by the progress of the fractionated crystallization. So, the three compatibilizers could be rated according to their effectiveness as follows: SEBS-g-MA > EAA > EGMA. The self-nucleation experiments have demonstrated that the lack of active nuclei in the finely dispersed PA6 droplets is the determining factor for the fractionated crystallization at high supercooling, and not the considered absolute particle size. The measurement of the Vickers microhardness of the compatibilized blends confirms that the compatibilizing activity of SEBS-g-MA and EAA is stronger than that of EGMA. 相似文献
5.
Hr. Yordanov 《European Polymer Journal》2003,39(5):951-958
Microhardness tests, water absorption and thermogravimetric measurements have been performed on blends of low density polyethylene (LDPE) with different molar mass and polyamide 6 (PA6) compatibilized with 2 pph poly(ethylene-co-acrylic acid) (Escor 5001 by Exxon). The negative deviation of Vickers microhardness from the additivity has been interpreted by changes in the crystallinity of the blend components. The hardness values of the compatibilized blends that are lower than those of the corresponding uncompatibilized blends have been explained by the decrease of the degree of crystallinity of PA6 phase in the presence of Escor. The molar mass of LDPE almost does not influence on the hardness values. The lower water absorption of the compatibilized blends, caused by the formation of a copolymer between PA6 and the compatibilizer leads to microhardness values of the wet compatibilized blends higher than those of the corresponding uncompatibilized blends. The thermogravimetric measurements demonstrate that the thermal stability of blends increases in the presence of 2 pph Escor 5001. The results confirm the compatibilizing efficiency of Escor 5001 towards LDPE/PA6 blends in a wide composition range. 相似文献
6.
应用耗散粒子动力学(DPD)模拟方法研究了PA6/PPS共混物的介观形貌及动力学演变过程.详细分析了不同比例下PA6/PPS共混物的介观形貌、密度、扩散系数以及界面张力等变化情况,同时还考察了不同剪切速率对体系介观形貌的影响.结果表明,PA6/PPS共混物中随PA6含量的增加,PA6的介观形貌依次出现球状、柱状、层状以及连续相等结构,PA6的扩散系数大于PPS,说明PA6的加入可以改善共混物的加工流动性,这与文献报道的实验结果相一致.同时剪切速率的大小对PA6/PPS体系形貌有着重要影响. 相似文献
7.
The influences of hyperbranched polyethylenimine(h PEI), which possesses many reactive amino end-groups, on the blending properties of bisphenol-A polycarbonate(PC) and amorphous polyamide(a PA) were systematically investigated. Scanning electron microscopy(SEM) and differential scanning calorimetry(DSC) were used to observe the effect of h PEI on morphologies of PC and a PA phases in bulk blends. While the interfacial fracture toughness between planar PC and a PA layers with and without h PEI was studied by using augmented double cantilever beam(ADCB) method. Results show that the compatibility in PC/a PA blends can be significantly improved by adding a small amount of h PEI, mainly due to the interchange reactions between the polymers leading to the formation of block copolymers, cross-linked polymers and molecules with other constitutions. The augmented double cantilever beam experiments showed that the reactive process drastically reinforced the interfacial adhesion between planar layers of PC and a PA. However, degradation takes place during annealing at 180 °C, which was responsible for the production of small molar mass species of PC. 相似文献
8.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc. 相似文献
9.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
A rheo-optical near-infrared (NIR) spectroscopy, based on the combination of NIR spectroscopy and mechanical analysis, was applied to polyamide (PA) 6 samples consisting of bundled amorphous chains. Sets of strain-dependent NIR spectra as well as tensile stress of dried and wet treated PA 6 samples were collected during the mechanical elongation of the samples. The spectra were then subjected to two-dimensional (2D) correlation analysis to elucidate fine features of the spectral changes. An asynchronous correlation peak develops between the bands at 2355 and 2300 nm due to the combination modes of CH2 groups arising from the rubbery amorphous chain and rigid crystalline lamella of the dried PA 6, respectively. It therefore indicates that during the tensile deformation, the orientation of the amorphous chain is induced first to cause the elastic deformation. Further elongation results in the rotation of the crystalline lamella connected with the amorphous chain. This correlation intensity apparently increases by the wet treatment, suggesting that water molecule in the PA 6 disrupts the H-bonding interaction between the adjacent polymer chains and thus makes the polymer more flexible. Accordingly, it is likely the H-bonding between the polymer chains works in a manner somewhat similar to cross-linked polymers, which substantially effects on the mechanical property of the PA 6. 相似文献
11.
G. G. Bandyopadhyay S. S. Bhagawan K. N. Ninan Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2004,42(8):1417-1432
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004 相似文献
12.
Recycled poly(ethylene terephthalate) (R‐PET) was blended with four types of polyethylene (PE), linear low density polyethylene (LLDPE; LL0209AA, Fs150), low density polyethylene (LDPE; F101‐1), and metallocene‐LLDPE (m‐LLDPE; Fv203) by co‐rotating twin‐screw extruder. Maleic anhydride‐grafted poly(styrene‐ethylene/butyldiene‐styrene) (SEBS‐g‐MA) was added as compatibilizer. R‐PET/PE/SEBS‐g‐MA blends were examined by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and mechanical property testing. The results indicated that the morphology and properties of the blends depended to a great extent on the miscibility between the olefin segments of SEBS‐g‐MA and PE. Due to the proper interaction between SEBS‐g‐MA and LDPE (F101‐1), most SEBS‐g‐MA, located at the interface between two phases of PET and LDPE to increase the interfacial adhesion, lead to better mechanical properties of R‐PET/LDPE (F101‐1) blend. However, both the poor miscibility of SEBS‐g‐MA with LLDPE (LL0209AA) and the excessive miscibility of SEBS‐g‐MA with LLDPE (Fs150) and m‐LLDPE (Fv203) reduced the compatibilization effect of SEBS‐g‐MA. DSC results showed that the interaction between SEBS‐g‐MA and PE obviously affected the crystallization of PET and PE. DMA results indicated that PE had more influence on the movement of SEBS‐g‐MA than PE did. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
13.
Poly(butylene terephthalate) (PBT) and a sample of polyamide have been melt processed in the presence of two new phosphazene compounds, namely 2,2-dichloro-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclotriphosphazene (2Cl-CP) and 2,2-bis(2-methoxy-4-methyleneoxy-phenoxy)-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclophosphazene (CP-2EPOX).The blends were prepared by using polyamide 6 (PA6) and polyamide 6,6 (PA66) in 25/75 and 75/25 w/w compositions by using a co-rotating twin-screw extruder.The materials have been completely characterized from a mechanical, rheological, and morphological point of view. The results indicate that the additives used cause an increase of the rupture properties and of the viscosity, especially in the PA6 rich blends containing CP-2EPOX. This result can be not only attributed to a chain extension effect on the PA phase but also to in situ formation of PA/PBT copolymers promoted by the presence of the CP compound as confirmed by NMR and MALDI-TOF analyses. The compatibilization effect fades in blends containing PA66, probably due to a thermal deactivation of the additives at higher temperature required to process this polymer. 相似文献
14.
O. Persyn V. Miri J.‐M. Lefebvre V. Ferreiro T. Brink A. Stroeks 《Journal of Polymer Science.Polymer Physics》2006,44(12):1690-1701
The deformation behavior of miscible PA6/aPA blends films under uniaxial and biaxial tensile drawing has been investigated in relation to blend composition. Whatever be the composition, the initial crystalline structure is ill‐ordered and no evidence of spherulitic morphology was shown. At temperatures beyond the activation of the viscoelastic α relaxation, a ductility improvement upon addition of aPA has been revealed in both uniaxial and biaxial stretching. The decrease in the yield stress with increasing aPA content mainly originates from the reduction in crystal fraction. Regarding the observed evolution in ultimate drawability and strain hardening upon addition of aPA, the latter component of the blend is considered to act as a diluent of the macromolecular network, and the experimental data are fairly well accounted for according to Graessley's theory. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1690–1701, 2006 相似文献
15.
Antimicrobial polyamide (PA) received much attention for the demand of packaging and biomedical fields. In this paper, an antimicrobial PA6 membrane was prepared via a surface chemical reaction. A highly effective antibacterial component (PHMG‐E) with terminal epoxy group was firstly synthesized via a reaction between polyhexamethylene guanidine hydrochloride (PHMG) and ethylene glycol diglycidyl ether (EGDE). Then, PHMG‐E was bonded on the surface of PA6 membrane with secondary amine reduced by borane‐tetrahydrofuran (BH3‐THF). The antimicrobial rates of surface‐modified PA6 membrane (PA6‐PHMG) against Escherichia coli and Staphylococcus aureus were both higher than 99.99%, and the PHMG was non‐leaching due to the chemical bonding. The hydrophilicity of antibacterial PA6 membrane was also significantly improved and the mechanical performance became better. 相似文献
16.
The morphology of polyamide 6/poly(butylene terephthalate)(PA6/PBT, 70/30, W/W) blends filled with pristine Zinc oxide(ZnO) nanoparticles and ZnO surface-modified by γ-glycidoxypropyltrimethoxysilane(K-ZnO) was investigated. The incorporation of ZnO and K-ZnO by one-step compounding both resulted in a smaller size and narrower distribution of PBT domains and the effect of ZnO was greater than K-ZnO. To reveal the underlying mechanism, two-step compounding in which ZnO or K-ZnO was premixed with PA6 or PBT was conducted and the finest morphology was achieved when mixing PA6 with premixed PBT/ZnO. Transmission electron microscopy(TEM) demonstrated that ZnO was distributed in PBT in all cases and K-ZnO was enriched at the interface except when K-ZnO was premixed with PBT. ZnO and K-ZnO caused a deterioration in the melt rheological properties of PBT, which played a dominating role in the morphological changes. In addition, the interfacial localization of K-ZnO enhanced the dynamic rheological properties of PA6/PBT blends substantially. 相似文献
17.
Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends 总被引:2,自引:0,他引:2
Youji Tao 《European Polymer Journal》2007,43(8):3538-3549
Binary blends of polypropylene (PP)/recycled poly(ethylene terephthalate) (r-PET), r-PET/maleic anhydride grafted PP (PP-g-MA), r-PET/glycidyl methacrylate grafted PP (PP-g-GMA), and ternary blends of PP/r-PET (80/20 w/w) compatibilized with various amounts (2-10 wt%) of PP-g-MA or PP-g-GMA were prepared on a twin-screw extruder. The non-isothermal crystallization and melting behavior, and the crystallization morphology were investigated by DSC and POM. The chemical reactions of r-PET with PP-g-MA and PP-g-GMA were characterized by FT-IR. DSC results show that the crystallization peak temperatures of r-PET and PP increased when blending them together, due to the heterogeneous nucleation effect on each other. The of r-PET increased with increasing the content of PP-g-MA while slightly influenced by the content of PP-g-GMA in the binary blends of r-PET with grafted PP, implying different reactivity of r-PET with PP-g-MA and PP-g-GMA. The of PP in the ternary blends retained or slightly decreased, dependent on the compatibilizers and their contents. The melting peak temperature of r-PET in PP/r-PET blends compatibilized by PP-g-MA was lower than that of compatibilized by PP-g-GMA, indicating that PP-g-MA had stronger reactivity towards r-PET compared to PP-g-GMA. The crystallization and melting behavior of blends was influenced by the pre-melting temperature, especially the melting behavior of r-PET in the blends. The crystallization behavior of PP in the blends was also evaluated by Mo’s method. POM confirmed the heterogeneous nucleation effect of r-PET on PP. 相似文献
18.
In this work the deformation and fracture behavior of PP/EVOH blends compatibilized with ionomer Na+ at room and low temperature was studied. Uniaxial tensile tests on dumb-bell samples and fracture tests on single-edge notched bending (SENB) specimens were performed for 10 wt.% and 20 wt.% EVOH blends with different ionomer content at 23 °C and −20 °C. The incorporation of EVOH to PP led to less ductile materials in tension as judged by the lower values of the ultimate tensile strain displayed by all PP/EVOH blends in comparison to neat PP. In contrast, the ionomer Na+ addition partially counteracted this effect. The compatibilizing effect of ionomer Na+ was also evident in fracture results since higher values of the fracture parameter were obtained for the ternary blends. SEM observations also confirmed this effect. On the other hand, PP/EVOH blends exhibited different fracture behavior with test temperature. All blends showed “pseudo stable” behavior at room temperature characterized by apparently stable crack growth that could not be externally controlled. On the contrary, blends behaved as semi-brittle at −20 °C with some amount of stable crack growth preceding unstable brittle fracture. Finally, irrespectively of the temperature or the ionomer content all PP/EVOH blends exhibited more ductile fracture behavior with a higher tendency to stable crack propagation than neat polypropylene. 相似文献
19.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998 相似文献
20.
Zachariah Oommen G. Groeninckx Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2000,38(4):525-536
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000 相似文献