首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Macroporous conducting polymer films were prepared by the electrochemical copolymerization of 3-methylthiophene and thiophene-3-acetic acid on the ITO-coated glass plates bearing different sizes of polystyrene template particles, and enzyme electrodes were fabricated by covalent immobilization of glucose oxidase on the macroporous copolymer films. It was found that the doping level and conductivity of the copolymer films was significantly affected by the treatment with solvent to remove the polystyrene particles, which was considered to result in deterioration in amperometric glucose-responding property of the enzyme electrodes fabricated with the copolymer films. Three-dimensionally ordered macroporous structure on the copolymer films led to enhancement of amperometric response of the enzyme electrodes, and this effect was attributed to the geometry of the interconnected channel structure formed by the linkage of macropores. It was suggested that the amperometric response of the enzyme electrodes was determined by whether the interconnected channel structure on the copolymer films had long distance regularity and a proper size to allow the enzyme and electron-mediator molecules to penetrate into the interior pores of the copolymer film. In particular, the interconnected channel structure seemed to play an important role in the electron-transfer reaction between the mediator molecules and the surface of electrodes.  相似文献   

2.
Glucose oxidase (GOx) was immobilized through amide linkages on the surfaces of the conducting polymer films prepared by electrochemical copolymerization of pyrrole (Py) and 1-(2-carboxyethyl)pyrrole (Py-COOH) for the purpose of fabricating GOx-immobilized electrodes for amperometric sensing of glucose. The conductivity of the copolymer film was in the range 10−8-10−3 S/cm and showed a tendency to decrease with increasing content of Py-COOH units in the copolymer. The amount of immobilized GOx increased significantly with increasing content of Py-COOH units in the copolymer film up to 30%, and showed a tendency to level off when the content of Py-COOH units became larger. The activity of immobilized GOx per area of the copolymer film decreased slightly with increasing content of Py-COOH units in the copolymer. Although the GOx-immobilized copolymer films gave the amperometric response to glucose depending on its concentration, the magnitude of the response to a given concentration was found to decrease with increasing content of Py-COOH units in the copolymer. The variation in the amperometric response was attributed to the difference in conductivity of the copolymer film. The appropriate content of Py-COOH units in the copolymer was considered to be 5% or less for the amperometric sensing of glucose with the GOx-immobilized copolymer film.  相似文献   

3.
A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry of the glucose oxidase/methyl viologen modified electrode was investigated by cyclic voltammetry and by electrochemical impedance spectroscopy. The biosensor response to glucose was evaluated amperometrically; the detection limit was 20 μM, the linear range extended to 1.2 mM and the reproducibility of around 3%. When stored in phosphate buffer at 4 °C and used every day, the sensor showed good stability over more several weeks.  相似文献   

4.
A copper containing Prussian Blue analogue was incorporated into a conducting polypyrrole film. The modified electrode was synthesized through an electrochemical two-step methodology leading to very stable and homogeneous hybrid films. These electrodes were proved to show excellent catalytic properties towards H2O2 detection, with a performance higher than those observed for Prussian Blue and other analogues. Electrochemical impedance spectroscopy experiments demonstrated that the excellent performance of these hybrid films is strongly related to the electronic conductivity of the polymeric matrix that is wiring the copper hexacyanoferrate sites. A glucose biosensor was built-up by the immobilization of glucose oxidase; the sensitivity obtained being higher than other biosensors reported in the literature even in Na+ containing electrolytes.  相似文献   

5.
Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol–gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors.  相似文献   

6.
We developed an integrated array of needle-type biosensors employing a novel process of fabrication, comprising conventional semiconductor fabrication and micromachining technology. Amperometric sensing electrodes with plasma-polymerized films and a thin-film Ag/AgCl reference electrode were directly integrated on a glass substrate with thin-film process, e.g., sputtering. An enzyme was immobilized on the electrode via the plasma-polymerized film, which was deposited directly on the substrate using a dry process. The novel thin-film Ag/AgCl reference electrode showed stable potentials in concentrated chloride solutions for a long period. The plasma-polymerized film is considered to play an important role as an interfacial design between the sensing electrode and the immobilized enzyme considering that the film is extremely thin, adheres well to the substrate (electrode) and has a highly cross-linked network structure and functional groups, such as amino groups. The results showed increments of the sensor signal, probably because the plasma-polymerized film allowed a large amount of enzyme to be immobilized. The greatest advantage is that the process can permit the mass production of high-quality biosensors at a low cost.  相似文献   

7.
Here, we report on a novel, versatile approach for the preparation of mediated enzyme electrodes, demonstrated using cross-linked films of glucose oxidase and a range of functionalised osmium complexes on graphite electrodes. Response of enzyme electrodes are optimised by evaluation of glucose response as a function of variation in ratios of [Os(2,2′-bipyridine)2(4-aminomethyl pyridine)Cl]+ redox mediator, polyallylamine support and glucose oxidase enzyme cross-linked using a di-epoxide reagent in films on graphite. Lowering of the redox potential required to mediate glucose oxidation is achieved by synthesis of complexes using (4,4′-dimethyl-2,2′-bipyridine) or (4,4′-dimethoxy-2,2′-bipyridine) as a ligand instead of (2,2′-bipyridine). Enzyme electrodes prepared using the complexes based on dimethoxy- or dimethyl-substituted bipyridines provide glucose oxidation current densities of 30 and 70 μA?cm?2 at 0.2 and 0.35 V applied potential compared to 120 μA?cm?2 at 0.45 V for the initial enzyme electrode, under pseudo-physiological conditions in 5 mM glucose, with stability of signals proving inadequate for long-term operation. Current output and stability may be improved by selection of alternate anchoring and cross-linking methodology, to provide enzyme electrodes capable for application to long-term glucose biosensors and anodes in enzymatic fuel cells.
Figure
Glucose enzyme electrodes for application as biosensors or anodes in enzymatic fuel cells prepared by crosslinking films of osmium complex, glucose oxidase and polymer support on graphite electrodes.  相似文献   

8.
A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.  相似文献   

9.
A carbon-paste chemically modified with glucose oxidase and a ferrocene-containing siloxane polymer was further modified by coating the electrode surface with a poly(ester-sulfonic acid) cation-exchanger, Eastman AQ-29D. The polymer is obtained as a homogeneous aqueous dispersion at pH 5–6; when dried, the polymer coating is not water-soluble. The coating was shown not to be detrimental to the enzyme activity but to prevent electrochemically active anionic interferents such as ascorbate and urate from reaching the electrode surface. The polymer coating also prevented glucose oxidase from leaking out of the carbon paste into the contacting solution and protected the electrode surface from fouling agents present in urine and bovine serum albumin. Uncoated electrodes lost some 10-2-15% of their original response to glucose after storage in buffer for three weeks whereas the response of the coated electrodes remained constant. Calibration curves for glucose were strictly linear up to about 5 mM for uncoated and up to 20 mM for coated electrodes. The response current to glucose was not decreased after coating.  相似文献   

10.
A carbon paper electrode was modified with the conducting copolymer of 3-methylthiopene and thiophene-3-acetic acid prepared electrochemically on the electrode, and an enzyme electrode was fabricated by covalent immobilization of glucose oxidase on the modified electrode. The modification with the conducting copolymer increased the surface area of the electrode and the amount of the immobilized enzyme. As a result, the enzyme electrode showed a high catalytic activity. Moreover, it was found that the increased surface area led to a high rate of electron transfer reaction between the electrode and p-benzoquinone employed as an electron mediator. The enzyme electrode fabricated with the modified carbon paper gave a larger glucose oxidation current than that fabricated with the bare one. In addition, the glucose oxidation current was found to increase with increasing content of the conducting copolymer in the modified carbon paper. Corresponding to the large glucose oxidation current, high performance was confirmed for the glucose fuel cell constructed with the enzyme electrode based on the modified carbon paper.  相似文献   

11.
Heated electrodes were applied for the non-isothermal operation of amperometric glucose biosensors based on glucose oxidase immobilised on the electrode surface by entrapment within a polymer layer. The localised deposition of the polymer film under simultaneous entrapment of the enzyme was achieved by an electrochemically induced pH-modulation in the diffusion zone in front of the electrode, thus altering the solubility of the polymer chains. This non-manual sensor preparation protocol could be successfully used for the modification of a novel indirectly heated electrode. The non-isothermal operating mode allows working at the optimum temperature of the enzyme sensors without any thermal distortion of the bulk solution. Increased surface temperature of the sensor thus accelerates transport as well as kinetic processes, resulting in an enhanced amperometric signal.In the presence of interfering compounds such as ascorbic acid, the proposed technique allows use of the diverging thermal impact on the sensing process, for different electrochemically active compounds, for a deconvolution of the amperometric signal at different electrode temperatures. A calculation method for determination of glucose in the presence of one interfering compound is presented as a basis for a calculative interference elimination.  相似文献   

12.
Two different biodegradable latex polymers functionalised by hydroxy (1) or gluconamide (2) groups proved to be good immobilisation matrixes for glucose oxidase. The responses of these biosensors to glucose additions were measured by potentiostating the modified electrodes at 0.6 V/SCE in order to oxidise the hydrogen peroxide generated by the enzymatic oxidation of glucose in the presence of oxygen. The response of such electrodes was evaluated as a function of film thickness, pH and temperature. Rotating disk electrode experiments showed the influence of the enzyme on the structure of both latex films, namely a marked improvement in matrix permeability. The high permeability of the latex 1 based enzyme sensor (bilayer, P(m)=8.10x10(-4) cm s(-1)) resulted in a high dynamic range. Furthermore, the activation energy for a latex 1 sensor was determined to be 44.55 and 18.03 kJ mol(-1), respectively depending on the conformation of the enzyme.  相似文献   

13.
Reagentless, oxygen-independent glucose biosensors based on an Os-complex-modified polypyrrole matrix and on soluble PQQ-dependent glucose dehydrogenase from Acinetobacter calcoaceticus are described.As the soluble form of glucose dehydrogenase from Acinetobacter calcoaceticus is a hydrophilic enzyme with a positive net charge, its entrapment into the positively charged hydrophobic polypyrrole film is much more complicated than that of the corresponding membrane enzyme or the negatively charged and very stable glucose oxidase. Possible ways for using soluble PQQ-dependent glucose dehydrogenase in combination with conducting polymer films are seen in the modulation of the enzyme properties by covalent binding of suitable compounds to the protein shell together with the adjustment of the properties of the conducting polymer film. This can be done by neutralising the net charge of the protein and/or optimising the electron-transfer pathway between enzyme and electrode surface by covalent binding of suitable redox relays to the protein surface.In addition, methods for increasing the hydrophilicity of the polymer film, such as the co-entrapment of high-molecular weight hydrophilic additives and copolymerisation of hydrophilic pyrrole derivatives are presented. It is demonstrated that the replacement of the parent monomer pyrrole by a suitable hydrophilic pyrrole derivative facilitates the entrapment of the modified soluble PQQ-dependent glucose dehydrogenase into the Os-complex-modified polymer and hence allows for the development of reagentless biosensors.  相似文献   

14.
Novel enzyme electrodes based on synthetic hydrophilic latex matrices are described for the detection of glucose. Glucose oxidase was immobilised through micro-encapsulation, by the simple adsorption of enzyme–latex suspensions on the surface of a platinum electrode. Two latex films functionalised by a hydroxy or a gluconamide group were used. The response of these biosensors to glucose additions was measured by potentiostating the modified electrodes at 0.6 V/SCE in order to oxidise the hydrogen peroxide generated by the enzymatic oxidation of glucose in the presence of dioxygen. The response of such electrodes was evaluated as a function of film thickness and temperature. The sensitivity for a two-layer latex-based biosensor was found to be 38.78 mA M−1 cm−2 with a response time of 3–5 s. Moreover, a marked improvement of the thermal stability of the biosensor was observed. Only at temperatures higher than 65°C the enzyme started to be denatured and being inactive.  相似文献   

15.
Glucose oxidase was immobilized onto electrodes by co-deposition from an aqueous solution containing the diluted ion-exchange polymer Nafion. The cationic exchange property of the polymer was used to provide high local concentrations of l,1'-dimethylferricinium (DMFc+) mediator in the film by exchange from solution. The mediated electrodes were operated at +200 mV (vs. ), and the Nafion film was shown to reduce interfering current from ascorbate anion. Cyclic voltammetric analysis revealed a fourteen-fold increase in the effective DMFc+ activity at the electrode after extraction into the film. The sensitivity to glucose was 52 μA/cm2/mM in a solution containing 0.09 mM DMFc+, which is at least three-fold greater than reported for similar electrodes using hydrogen peroxide detection at +650 mV, with a response time of less than 1 min for a 10 μm thick membrane. Oxygen interference was significant, requiring deaeration of the solution before analysis. The electrodes exhibited no significant decrease in sensitivity for more than 50 days on storage in acetate buffer. Electrodes covered with 8000 MWCO dialysis membrane slowed the exchange of DMFc+ with the solution such that the Nafion film functioned as a mediator reservoir. This permitted reagentless analysis of glucose, typically capable of twenty assays when measuring concentrations between 0.1 and 1 mM. The sensitivity for glucose was 7.85 μA/cm2/mM, which is 15% of the sensitivity for the electrode without the dialysis membrane. The detection limit was 20 μM, with a linear range extending to about 3 mM, giving a dynamic range of over two orders of magnitude. Thus where some sacrifice of sensitivity and response rate may be made, the dialysis membrane cover enables multiple analyses in a reagentless biosensor scheme.  相似文献   

16.
An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.  相似文献   

17.
The construction and the properties of conducting-polymer based amperometric enzyme electrodes are reviewed. The main aim is to focus on the properties of conducting polymer films which are important for the construction of amperometric enzyme electrodes. Additionally, the review is focused on electron-transfer pathways between conducting-polymer integrated immobilized enzyme molecules and the modified electrode using free-diffusing redox mediators as well as direct electron transfer via the conducting-polymer wires. Possible future applications using microstructured conducting-polymer films will be discussed.  相似文献   

18.
Impedance sensors in thick film technology have been tested as a tool for electric cell-substrate impedance sensing. The screen printed Pt electrodes have a width of 250-400 microm. Electrodes and the surrounding ceramic chip substrate could be homogeneously grown with L-929 and Hela cells. The performance of a screen printed interdigitated electrode structure (IDES) was compared with that of thin film structures with the same layout geometry. The thick film impedance sensors allowed to correctly record the morphological response of confluent Hela cell layers to stimulation with histamine. A thick film conductivity sensor also revealed impedance values which were dependent on cell growth on the electrode surface, even at a very low frequency range of approximately 1 Hz.  相似文献   

19.
Polyvinylferrocene (PVF) was electrochemically deposited on platinum and carbon electrodes to form a stable and resilient film. During cyclic voltammetry in phosphate buffer, the PVF film deposited on carbon electrodes exhibited anodic and cathodic peaks at 214 and 68 mV, respectively. Both types of electrodes, bearing electrodeposited PVF and crosslinked glucose oxidase, were responsive to glucose, but the carbon electrode appeared to provide a faster response and could determine glucose between 0.1 and 8 mM. When protected by a layer of polymer electrochemically formed from resorcinol and phenylenediamine, the mediated biosensors based on PVF-deposited carbon electrodes were capable of determining glucose up to 25 mM with a response time of 1 min, for at least 50 repeated analyses with good reproducibility. The presence of ambient oxygen, ascorbic acid (0.1 mM), and uric acid (0.5 mM) did not affect their performance. When applied for the determination of the glucose level in reconstituted human serum, the results agreed well with those of the reference hexokinase assay.  相似文献   

20.
Here we describe the chemiresistive H2-sensing properties of drop-cast films comprised of 3.0 nm average diameter hexanethiolate-coated Pd monolayer-protected clusters (C6 Pd MPCs) bridging a pair of electrodes separated by a 23 microm gap. The gas-sensing properties were measured for 9.6-0.11% H2 in a H2/N2 mixture. The sensing mechanism is based on changes in the resistance of the film upon reaction of Pd with H2 to form PdH(x), which is known to be larger in volume and more resistive than pure Pd. As-prepared Pd MPC films are highly insensitive to H2, requiring O3 and thermal treatment to enhance changes in film resistance in the presence of H2. Exposure to O3 for 15 min followed by activation in 100% H2 leads to an increase in film conductivity in the presence of H2, with a detection limit of 0.11% H2. When exposed to temperatures of 180-200 degrees C, the conductivity of the film increases and a decrease in conductivity occurs in the presence of H2 with a detection limit of 0.21%. The sensing behavior reverses after further heating to 260 degrees C, exhibiting an increase in conductivity in the presence of H2 as in O3-treated films and a detection limit of 0.11%. The sensitivity of the variously treated films follows the order O3 > high temp > low temp, and the response times at 1.0% H2 range from 10 to 50s, depending on the treatment. FTIR spectroscopy, Raman spectroscopy, and atomic force microscopy provide information about the C6 monolayer, Pd metal, and film morphology, respectively, as a function of O3 and heat treatment to aid in understanding the observed sensing behavior. This work demonstrates a simple chemical approach toward fabricating a fast, reversible sensor capable of detecting low concentrations of H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号