首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential biomedical application of carbon nanotubes (CNTs) pertinent to drug delivery is highly manifested considering the remarkable electronic and structural properties exhibited by CNT. To simulate the interaction of nanomaterials with biomolecular systems, we have performed density functional calculations on the interaction of pyrazinamide (PZA) drug with functionalized single-wall CNT (fSWCNT) as a function of nanotube chirality and length using two different approaches of covalent functionalization, followed by docking simulation of fSWCNT with pncA protein. The functionalization of pristine SWCNT facilitates in enhancing the reactivity of the nanotubes and formation of such type of nanotube-drug conjugate is thermodynamically feasible. Docking studies predict the plausible binding mechanism and suggests that PZA loaded fSWCNT facilitates in the target specific binding of PZA within the protein following a lock and key mechanism. Interestingly, no major structural deformation in the protein was observed after binding with CNT and the interaction between ligand and receptor is mainly hydrophobic in nature. We anticipate that these findings may provide new routes towards the drug delivery mechanism by CNTs with long term practical implications in tuberculosis chemotherapy.  相似文献   

2.

Functionalization is an important method to change electrical and thermodynamic properties of carbon nanotubes. In this study, the effect of functionalization of a single-walled carbon nanotube (SWCNT) was investigated with the aid of density functional theory. For this case, a (5, 0) zigzag SWCNT model containing 60 C atoms with 10 hydrogen atoms added to the dangling bonds of the perimeter carbons was used. To model hydroxyl CNT two terminal H atoms were replaced by two –OH groups. All the functionalized CNTs are thermodynamically more stable and have higher dipole moment with respect to the pristine CNT. Depending on the positions of hydroxyl groups on CNT five isomers of C60H8(OH)2 were obtained. The structure of these five isomers and molecular properties such as the HOMO–LUMO gaps, the dipole moments, and the density of state were calculated. Our results indicate that the HOMO–LUMO gap strongly depends on the placement of the hydroxyl groups on the nanotubes. The isomers were hydroxyl groups locate on the anti-position show the highest distortions in the structure of the CNT.

  相似文献   

3.
The effect of single walled carbon nanotube (SWCNT) fillers on the low temperature thermal properties and curing behavior of SWCNT‐silicone nanocomposite are reported for the first time. The SWCNT‐silicone composites were prepared by different mixing procedures and characterized by differential scanning calorimetry (DSC). Solution mix, with the aid of sonication and soaking achieved better dispersion of SWCNTs in the silicone. The adding of SWCNTs in polymer seriously hindered the curing of silicone elastomer. The hindrance increased with increasing concentration of SWCNT and the quality of dispersion. The glass transition temperatures (Tg) of the nanocomposites were found to be independent of the SWCNT addition, although, the steps in the heat capacity (Δcp) of the glass transition were smaller with increasing SWCNTs concentration. The melt crystallization behavior was strongly dependent on the concentration and dispersion of SWCNT in the polymer. The cooling scan showed that the higher concentration and the better dispersion of SWCNTs in the silicone resulted in higher percentage of melt crystallization of this nanocomposite. The correlation of the change of thermal properties to the dispersion of CNT in polymer may be used to determine the quality of SWCNT dispersion in silicone polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1845–1852, 2008  相似文献   

4.
The upper limit of the elastic modulus has been estimated for a polymer–carbon nanotube–epoxy matrix nanocomposite. This limit can be achieved if the nanotubes are integrated into the matrix, i.e., they form a continuous reinforcing network inside the matrix, and if the nanotubes are single-walled or double-walled carbon nanotubes. A technique for carbon nanotube functionalization via fluorination and fluorine substitution and a technique for calculating the degree of nanotube functionalization based on reaction yield measurements are proposed. For fluorine substitution by epoxy-diane resin and diaminodiphenylmethane, the degree of functionalization is С–(FG)x, x ~ 0.011–0.013 and the FG-molecular fragment containing the epoxy (amino) group corresponding to functionalization of ~5% of the surface С atoms of nanotubes. The control reaction showed that the epoxy groups preserve the chemical activity, while part of the amino groups are deactivated. The grafted epoxy(amino) groups ensure nanotube surface lyophilicity in epoxy composites and integrate the nanotubes into the epoxy matrix owing to the chemical bonds.  相似文献   

5.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

6.
The present work investigated the effects of non-ionic surfactant treatment on the dispersibility, surface chemistry and structure of carbon nanotube (CNT) particles. Subsequently, the fracture experiments of as-prepared epoxy/CNT@X nanocomposites were carried out under quasi-static and dynamic loading conditions. By simply introducing the steric repulsive force between CNT@X filler and epoxy matrix, improved mode-I critical-stress-intensity factor (KIc) and dynamic crack initiation toughness (KIid) of the epoxy/CNT@X nanocomposite were simultaneously obtained without compromising other desired physical properties, such as electrical properties and electro-thermal behavior. In the case of SHPB impact loading, high-speed imaging along with digital-image-correlation (DIC) technology was utilized to determine dynamic fracture parameters. The results showed a notable reinforcement for the epoxy/CNT@X nanocomposite category, producing maximum increase of ~79% and ~153% in KIc and KIid values relative to epoxy/CNT nanocomposite at such maximum content of 1.0 wt%, respectively. The most delayed crack initiation time (59.9–68.4 μs) and slowest crack-tip velocity (229 ± 28 m/s) were also observed in the epoxy/CNT@X_1.0 case. These results may be explained by improved dispersibility and interfacial adhesion after surfactant treatment.  相似文献   

7.
Strong luminescence emissions over a broad wavelength region were detected from well-dispersed carbon nanotubes in most functionalized samples, even with excitation wavelengths into the near-IR. Apparently, the better dispersion and functionalization of the nanotubes resulted in more intense luminescence emissions. These emissions may logically be attributed to the trapping of excitation energy by defect sites in the nanotube structure, which are passivated upon the appropriate functionalization of the nanotubes. Better functionalization improves not only the nanotube dispersion (thus diminishing the quenching due to intertube interactions) but also the surface passivation to make the energy trapping sites more emissive, leading to stronger luminescence emissions. Because of such high sensitivity, the visible luminescence emissions may prove valuable in the evaluation of dispersion in functionalized carbon nanotube samples and related nanocomposite materials.  相似文献   

8.
The adsorption of the potassium atom onto the surface of (n,0) zigzag nanotube (n = 5–10) and (n,n) armchair nanotubes (n = 3, 5) has been studied by density functional theory. The local density approximation calculation of adsorption energy (E ads) emphasized on the dependency of E ads to the diameter and chirality of the nanotube. E ads decreases when the diameter increases. So the (5,0)-K system has the highest adsorption energy among all structures. Furthermore, a significant change was observed in the electronic properties of potassium-adsorbed single-walled carbon nanotube (SWCNT) and the metallic behavior of the nanotube improved. Therefore, our results showed that such modified SWCNTs can be applied in nanodevices such as transistors.  相似文献   

9.
Electrochemical polymerization of N-vinyl carbazole (VK) on carbon nanotube (CN) films was studied by cyclic voltammetry in LiClO4/acetonitrile solutions. Cyclic voltammograms recorded on a blank Pt electrode were compared with those obtained when single or multi-walled CN films were deposited on the Pt electrode; in the latter case, a down-shift of the VK reduction peak potential was observed. Functionalization of CNs with poly(N-vinyl carbazole) (PVK) was invoked by Raman scattering and UV-VIS-NIR spectroscopic studies. The influence of sweep rate on the electrochemical properties of the PVK/CN nanocomposite and the performance of supercapacitors constructed using PVK-functionalized single-walled carbon nanotube electrodes were also evaluated.  相似文献   

10.
将耐尔兰(Nile Blue, NB)分子修饰到碳纳米管(CNT)表面形成NB-CNT纳米复合体, 谱学结果表明, NB不仅能快速、高效地修饰到CNT表面, 而且还能有效地改善CNT在水溶液中的分散性能. 将NB-CNT修饰到玻碳(GC)电极表面制备了NB-CNT/GC电极, 循环伏安结果显示, 其伏安曲线上不仅表现出一对良好的、几乎对称的NB单体的氧化还原峰, 式量电位E0'几乎不随扫速而变化[其平均值为(-0.422±0.002) V (vs. SCE, 0.1 mol/L PBS, pH 7.0)]; 而且还显示出NB聚合体分子的氧化还原峰, E0'为-0.191 V (100 mV/s时). 进一步的实验结果表明, NB和CNT对NADH(即还原型β-烟酰胺腺嘌呤二核苷酸, 又称还原型辅酶I)的电化学氧化具有协同催化作用, 能使其氧化过电位降低多于560 mV; NB-CNT/GC电极还能较好地响应脱氢酶催化底物氧化过程中体系内NADH浓度的变化. 本文对碳纳米管功能化方法具有简单快速、电极制作容易以及催化效率高等优点, NB-CNT/GC电极有望在制作脱氢酶传感器方面得到应用.  相似文献   

11.
The present research aimed at investigating the electrocatalytic properties and the electrochemical deposition of Pt nanoparticles on carbon powder, carbon nanotube and preparation of carbon and single wall carbon nanotube supported platinum electrodes. The Pt nanoparticles were synthesized by electroreduction of hexachloroplatinic acid in aqueous solution at ?200 mV. Electrocatalytic properties of the modified electrodes for oxygen reduction were investigated by cyclic voltammetry in O2 saturated solution containing 0.1 M HClO4. Methanol electrooxidation at the modified surfaces in 0.5 M HCLO4 was studied by cyclic voltammetry. The corresponding results showed that the Pt/SWCNT/GC electrode exhibits more improved catalytical activity than the Pt/C/GC electrode.  相似文献   

12.
We investigate the transport properties of few-nm-long single-walled carbon nanotube (SWCNT) p-n junctions for the first time by using ab initio quantum transport calculations. Unlike the previously reported few-??m-long SWCNT p-n junctions, which rectify positively, all the investigated ultrashort SWCNT p-n junctions show negative rectification effect, accompanied by negative differential resistance.  相似文献   

13.
In this study, electrophoretic deposition (EPD) was employed to fabricate multi-wall carbon nanotube (MWCNT) counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Firstly, raw MWCNTs were functionalized by means of an acid mixture solution and then subjected to EPD. The results obtained from Raman spectroscopy, Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and cyclic voltammogram demonstrated that the defects and open ends on the MWCNTs can be obtained via chemical functionalization and thus facilitate the enhancement in the electrocatalytic activity for I3 reduction of MWCNT CEs. In addition to optimizing chemical functionalization of MWCNTs surface, the optimal thickness of MWCNT CEs prepared by EPD was also investigated. Additionally, consecutive cyclic voltammetric tests demonstrated that the MWCNT CE fabricated by EPD possessed excellent electrochemical stability. In comparison with MWCNT CEs fabricated by tape-casting approach, MWCNT CEs prepared by EPD presented a superior adhesion between MWCNT deposits and conducting glass substrates. Therefore, MWCNT CEs fabricated by EPD can be of great potential for use in low-cost plastic DSSCs.  相似文献   

14.
We present a new, facile and efficient method to prepare functional graphene (GN) hybrid nanomaterials using direct electrolytic exfoliation of graphite robs in hemin (HN) and single-walled carbon nanotube (SWCNT) solution. During the exfoliation process, HN and SWCNT were simultaneously adsorbed on the surface of GN nanosheets through noncovalent π–π interaction, and then 3D GN–HN–SWCNT hybrid nanomaterials were formed. Due to the synergic effect among GN, HN, and SWCNT, these hybrid nanomaterials possessed excellent electrocatalysis properties and were used to construct novel electrochemical biosensor for H2O2 determination. The results displayed a wide linear range of 0.2 μM–0.4 mM and a low detection limit of 0.05 μM. Moreover, the developed sensor was successfully applied for real samples, such as beverages, and showed great promise in routine sensing applications.  相似文献   

15.
It was reported that carbon nanotube (CNT) was functionalized with the electroactive Nile blue (NB), which is a phenoxazine dye, by a method of adsorption to form a NB-CNT nanocomposite. The NB-CNT nanocomposite was characterized by several spectroscopic techniques, for example, Ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared (FTIR), Raman spectroscopy and scanning electron microscopy (SEM) etc., and the results showed that NB could rapidly and effectively be adsorbed on the surface of CNT with a high stability without changing the native structure of NB and the structure properties of CNT. Moreover, it was shown that the dispersion ability of CNT in aqueous solution had a significantly improvement after CNT functionalized with NB even at a level of high concentration, for example, 5 mg of NB-CNT per 1 mL of H2O. The NB-CNT/ glasssy carbon (GC) electrode was fabricated by modifying NB-CNT nanocomposite on the GC electrode surface and its electrochemical properties were investigated by cyclic voltammetry. The cyclic voltammetric results indicate that CNT can improve the electrochemical behavior of NB and greatly enhance its redox peak currents. While the NB-CNT/GC electrode exhibited a pair of well-defined and nearly symmetrical redox peaks with the formal potential of (−0.422±0.002) V (versus SCE, 0.1 mol/L PBS, pH 7.0), which was almost independent on the scan rates, for electrochemical reaction of NB monomer; and the redox peak potential of NB polymer located at about −0.191 V. The experimental results also demonstrated that NB and CNT could synergistically catalyze the electrochemically oxidation of NADH (β-nicotinamide adenine dinucleotide, reduced form) and NB-CNT exhibited a high performance with lowing the overpotential of more than 560 mV. The NB-CNT/GC electrode could effectively sense the concentration of NADH, which was produced during the process of oxidation of substrate (e.g. ethanol) catalyzed by dehydrogenase (e.g. alcohol dehydrogenase). The presented method for functionalization of CNT had several advantages, such as rapid and facile CNT functionalization, easy electrode fabrication and high electrocatalytic activity, etc., and could be used for fabrication electrochemical biosensor on the basis of dehydrogenase. __________ Translated from Acta Chimica Sinica, 2007, 65(1): 1–9 [译自: 化学学报]  相似文献   

16.
A functionalized single-walled carbon nanotube (SWCNT) of a finite length with a ring-like hydrogenation around its surface is designed toward fabrication of a molecular field-effect transistor (FET) device. The molecular wire thus designed is equipped with a quantum dot inside, which is confirmed by theoretical analysis for electronic transport. In particular, the current-voltage (I-V) characteristics under influence of the gate voltage are discussed in detail.  相似文献   

17.
The development of highly efficient adsorbents materials for the purification of wastewater has caught a considerable deal of attention these days. Conducting polymers functionalized adsorbents has become a favorable route for enhancing their adsorption capability due to their ease of synthesis at laboratory scale. In this study, functionalized multiwalled carbon nanotube (CNT)-polyaniline (Pani) composites were fabricated using an oxidation polymerization methodology and later doped with para toluene sulfonic acid (pTSA). The CNTs provided an adequate substrate for the adhesion of Pani as well as a large surface area due to its nano size, and pTSA provided additional functionality for the adsorption of differently charged moieties through strong or weak interactions. The as-synthesized pTSA-Pani@CNT nanocomposite was analyzed by the scanning electron microscopy, transmission electron microscopy for the morphological studies and the structural analysis were done by the X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The characterization results confirmed that the Pani was adhered to the CNTs as well as its successful functionalization with pTSA. The pTSA-Pani@CNT composite was then applied to the adsorptive removal of hexavalent chromium (Cr(VI)) and the composite showed higher adsorption for Cr(VI) than pTSA-CNT and pTSA-Pani, and the maximum removal level was detected at acidic pH. The analyses of the equilibrium isotherms and adsorption kinetics were performed to elucidate the adsorption mechanism. The XPS analysis indicated that Cr(VI) was strongly bounded to the adsorbent and it further indicated that the amine, imine, and hydroxyl functional groups were involved in the adsorption process. This study presents a new insight for the fabrication of highly functional polymer-carbonaceous nanocomposites for the scavenging of heavy metals from water bodies.  相似文献   

18.
An effective and versatile method for tube-length-specific functionalization of carbon nanotubes through a controllable embedment of vertically-aligned carbon nanotubes into polymer matrices is reported, which allows not only asymmetric functionalization of nanotube sidewalls, but also facile introduction of new properties (e.g. magnetic) onto the region-selectively functionalized carbon nanotubes.  相似文献   

19.
We tuned the electronic properties of single wall carbon nanotube (SWCNT) with intercalation of naphthalene derivatives (NDs) having different electron donor or acceptor property in the SWCNT bundles. Characterization of the adsorbed SWCNT with Raman spectroscopy and electrical conductivity measurement clearly indicate the charge transfer interaction of ND molecules with SWCNT. Also X-ray diffraction supports the intercalation of ND molecules in the interstitial spaces and groove sites of SWCNT bundle. Intercalation of ND molecules enhances remarkably the CO2 adsorptivity, which can be ascribed to the key importance of the interaction of the quadrupole moment of CO2 with the local electrical field on the SWCNT induced by the charge transfer interaction.  相似文献   

20.
An organo‐functionalized polyoxometalate (POM)–pyrene hybrid (Py‐Anderson) has been used for noncovalent functionalization of carbon nanotubes (CNTs) to give a Py‐Anderson‐CNT nanocomposite through π–π interactions. The as‐synthesized nanocomposite was used as the anode material for lithium‐ion batteries, and shows higher discharge capacities and better rate capacity and cycling stability than the individual components. When the current density was 0.5 mA cm?2, the nanocomposite exhibited an initial discharge capacity of 1898.5 mA h g?1 and a high discharge capacity of 665.3 mA h g?1 for up to 100 cycles. AC impedance spectroscopy provides insight into the electrochemical properties and the charge‐transfer mechanism of the Py‐Anderson‐CNTs electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号