首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel flexible diamine with built-in ester, amide and ether groups named terephthalic acid bis(4-{2-[2-(2-amino ethoxy)ethoxy]ethyl carbamoyl}phenyl) ester (TABE), was synthesized via two steps. Nucleophilic reaction of 4-hydroxybenzoic acid with terephthaloyl chloride in the presence of NaOH yielded terephthaloyl bis (4-oxybenzoic) acid (TOBA). The diamine (TABE) was prepared via two direct and indirect methods. In the indirect method TOBA was converted to related diacid chloride and reacted with 1,8-diamino-3,6-dioxaoctane (DADO). Direct method was achieved through the reaction of TOBA with DADO via Yamazaki method. TOBA and TABE were fully characterized and TABE was used to prepare new poly(ester amide ether amide)s through polycondensation with different diacid chlorides in the presence of trimethylchlorosilane (TMSCl). The polymers were characterized using conventional methods and their physical properties including inherent viscosity, thermal behavior, thermal stability, crystallinity, and solubility were studied. The polymers showed good thermal stability and improved solubility.  相似文献   

2.
A new diamine containing one keto and four ether groups was prepared through a three‐step reaction: first, hydroquinone was reacted with 1‐fluoro‐4‐nitrobenzene and 4‐(4‐nitrophenoxy) phenol was obtained. The next step was reduction of nitro group to amino group in which 4‐(4‐aminophenoxy) phenol was prepared. In the final step, the new diamine named as bis(4‐(4‐(4‐aminophenoxy)phenoxy)phenyl) methanone was synthesized through reaction of the later compound with 4,4′‐difluoro benzophenone. All prepared materials were fully characterized by spectroscopic methods and elemental analysis. Novel species of poly(keto ether ether amide)s were synthesized via polymerization reaction of the diamine with different diacid chlorides including terephthaloyl chloride, isophthaloyl chloride, and adipoyl chloride. All polyamides were characterized, and their properties such as thermal behavior, thermal stability, solubility, viscosity, water uptake, and crystallinity were investigated and compared together. The glass transition temperatures of the polymers were about 204–232°C, and their 10% weight losses were in the range of 396–448°C. Polymers showed high thermal stability and enhanced solubility that mainly resulted from incorporation of the diamine structure containing keto, ether, and aromatic units into polyamide backbones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Synthesis and characterization of ferrocene‐containing main‐chain polyamides are reported in this article. A new, interesting type of organometallic monomer (FDADO) based on ferrocene was prepared by interfacial condensation of 1,1′‐dichlorocarbonyl ferrocene with 2 mol 1,8‐diamino‐3,6‐dioxaoctane (DADO). A series of ferrocene‐based polyamides was prepared via polycondensation of the ferrocenyl diamine (FDADO) with different diacid chlorides using two different methods. The monomer and polymers were characterized by elemental analysis, infrared and NMR spectroscopy. The thermal stability and behavior of the synthesized polymers were evaluated by thermal gravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC). The crystallinity of polymers was examined by X‐ray diffraction analysis. Inherent viscosity, solubility and flame‐retardancy of the polymers were also studied. The obtained polymers showed good heat‐resistance and flame‐retardancy, and improved solubility vs generally reported polyamides in some common organic solvents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A new sulfone ether amide diamine was synthesized via three steps, starting from reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide afforded N-(4-hydroxy phenyl)-4-nitrobenzamide (HPNB). In the next step, reduction of nitro group resulted in preparation of 4-amino-N-(4-hydroxy phenyl) benzamide (AHPB). Final step in the preparation of diamine was the reaction of AHPB with bis(4-chlorophenyl) sulfone in the presence of K2CO3. All the materials were characterized using conventional spectroscopic methods. Poly(sulfone ether amide amide)s were synthesized by polycondensation reactions of prepared diamine with different diacid chlorides (aromatic and aliphatic ones). The obtained polymers were fully characterized and their physical properties including thermal behavior, thermal stability, solubility, and inherent viscosity were studied.  相似文献   

5.
A series of new poly(amide imide)s was prepared from new diacid containing sulfone, ether, amide and imide groups with various aromatic diamines. The diacid was synthesized via four steps, starting from reaction of 4-aminophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide afforded N-(4-hydroxy phenyl)-4-nitrobenzamide. In the second step, reduction of nitro group resulted in preparation of 4-amino-N-(4-hydroxy phenyl) benzamide. In the next step for the preparation of diamine, the reaction of 4-amino-N-(4-hydroxy phenyl) benzamide with bis-(4-chlorophenyl) sulfone in the presence of K2CO3 was achieved. The prepared sulfone ether amide diamine was reacted with two moles of trimellitic anhydride to synthesize related sulfone ether amide imide diacid. The precursors and final monomer were characterized by FT-IR, H-NMR and elemental analysis. Direct polycondensation reaction of the sulfone ether amide imide diacid with different diamines in the presence of triphenyl phosphite afforded five different poly (sulfone ether amide imide amide)s. The obtained polymers were fully characterized and their physical properties including thermal behavior, thermal stability, solubility, and inherent viscosity were studied.  相似文献   

6.
Two new poly(ether amide ether imide)s (PEAEIs) were prepared from a new diamine (DA) containing ether, aliphatic, amide, naphthyl and pyridine functional groups that resulted flexible and thermally stable ultimate polymers. The DA was synthesized via two steps, starting from nucleophilic substitution reaction of 1,8‐diamino‐3,6‐dioxaoctane with 6‐chloronicotinoyl chloride in the presence of propylene oxide which, afforded dichloro‐diamide (DCDA) compound. In the second step for the preparation of DA, reaction of DCDA compound with 5‐amino‐1‐naphthol in the presence of K2CO3 was achieved. The new DA was then polycondensed with 2,2'‐bis‐(3,4‐dicarboxyphenyl) hexafluoropropane dianhydride and pyromellitic dianhydride to produce PEAEIs. The precursor, monomer and obtained polymers were entirely characterized by FT‐IR and 1H‐NMR spectroscopy and elemental analysis techniques. The physical properties of the polymers including solubility, thermal behavior, thermal stability, inherent viscosity, morphology and mechanical properties were studied. The new PEAEIs exhibited favorable balance of physical and thermal properties, and their solubility was improved without sacrificing their thermal stability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new aromatic sulfone ether diamine was synthesized by nucleophilic aromatic substitution reaction of 5‐amino‐1‐naphthol with bis(4‐chlorophenyl) sulfone in the presence of potassium carbonate in a polar aprotic solvent. Polycondensation reactions of the obtained diamine with pyromellitic dianhydride (PMDA), benzophenonetetracarboxylic dianhydride (BTDA), and hexafluoroisopropylidene diphthalic anhydride (6FDA) resulted in preparation of thermally stable poly(sulfone ether imide)s. Poly(sulfone ether amide)s also were prepared by reaction of the diamine with terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC). The prepared monomer and polymers were characterized by conventional methods. Physical and mechanical properties of polymers, including thermal stability, thermal behavior, solution viscosity, solubility behavior, and modulus, also were studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1487–1492, 2000  相似文献   

8.
A new diamine was prepared via reaction between 8-hydroxy-5-nitroquinoline and 4-nitrobenzoyl chloride, followed by reduction of the nitro groups of the resulted compound. Novel quinoline-based poly(ester-amide)s were produced through polycondensation reactions of the prepared diamine with different diacid chlorides. The monomer and poly(ester-amide)s were characterized and properties of the polymers including solution viscosity, thermal behavior and stability, solubility, and crystallinity were studied.

High thermal stability and improved solubility was observed for the polymers, indicating successful designing of monomer and related polymers for overcoming the main issue of thermally stable polymers, i.e. the problem of increasing solubility versus high thermal stability.

Also, by changing the diacid chlorides for the preparation of poly(ester-amide)s, the structure-property relations were investigated.  相似文献   

9.
A novel pyridine-based ether ester diamine was prepared in three steps. Reaction of 1,5-dihydroxy naphthalene with 4-nitrobenzoyl chloride afforded 5-hydroxy-1-naphthyl-4-nitrobenzoate (HNNB). Reduction of nitro group resulted in preparation of an amino compound named 5-hydroxyl-1-naphthyl-4-aminobenzoate (HNAB). The diamine was synthesized by nucleophilic substitution reaction of 5-hydroxyl-1-naphthyl-4-aminobenzoate with 2,6-dichloropyridine in the presence of K2CO3. The obtained diamine was fully characterized and used to prepare novel thermally stable poly (ether ester amide)s via polycondensation reaction with different aromatic and aliphatic diacid chlorides. All the polymers were characterized and their physical and thermal properties were studied.  相似文献   

10.
Nucleophilic aromatic substitution reaction of 4-aminophenol and also 5-amino-1-naphthol with 2,6-dichloropyridine in N-methyl-2-pyrrolidone (NMP) as solvent, in the presence of potassium carbonate, afforded two aromatic ether diamines. Eight soluble, thermally stable polyamides were prepared by polycondensation reaction of the obtained diamines with aromatic and aliphatic diacid chlorides including terephthaloyl chloride (TPC), isophthaloyl chloride (IPC), adipoyl chloride (AC), and sebacoyl chloride (SC). The prepared monomers and polymers were characterized by conventional spectroscopic methods. Physical and thermal properties of the polymers, such as thermal behavior, thermal stability, solution viscosity, and solubility behavior were also studied.  相似文献   

11.
New polyamides containing 1,3,4‐oxadiazole and naphthalene rings were prepared by low‐temperature solution polycondensation reaction of a new diamine containing preformed oxadiazole ring with various aromatic diacid chlorides. Elemental analysis, mass, infrared, and nuclear magnetic resonance spectroscopy were used to confirm the structure of the monomers and corresponding polymers. The thermal stability and glass transition temperatures of these poly(oxadiazole‐amide)s were measured and compared with those of related polymers. Their good solubility allows them to be processed in very thin films with smooth surfaces, without pinholes or cracks, when studied by atomic force microscopy. Upon irradiation with UV light the polymers showed photoluminescence maxima in the blue spectral range, both in solution and in solid state. Cyclic voltammetry (CV) was performed in order to obtain information about the electrochemical stability and reversibility of the redox processes of these polyamides. The highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels, and electrochemical and optical band gap values were calculated by using the results of CV and UV/vis, respectively, showing very good electron and hole injection and transport characteristics. These properties make the present polymers suitable for application in electroluminescent devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A new diamine containing sulfone,sulfide and amide groups was synthesized via a three-step reaction process. The nucleophilic substitution reaction of 4-aminothiophenol with 4-nitrobenzoyl chloride in the presence of propylene oxide (PO) afforded N-(4-mercaptophenyl)-4-nitrobenzamide(MPNB).The catalytic reduction of the nitro group in MPNB to amino group was accomplished by using Pd/C and hydrazine monohydrate to produce 4-amino-N-(4-mercapto phenyl)benzamide(AMPB).Reaction of two moles of AMPB with bis(...  相似文献   

13.
A new diamine monomer containing flexible sulfone, sulfide, and amide units was prepared via three steps. Nucleophilic chloro displacement reaction of 4‐aminothiophenol with 4‐nitrobenzoyl chloride in the presence of propylene oxide afforded N‐(4‐mercapto‐phenyl)‐4‐nitrobenzamide and subsequent reduction of the nitro intermediate led to 4‐amino‐N‐(4‐mercapto‐phenyl)benzamide. Two moles of this amino thiophenol compound was reacted with bis‐(4‐chloro phenyl)sulfone to provide a novel diamine monomer. The diamine was reacted with aromatic dianhydrides to form polyimides via a two‐step polycondensation method, formation of poly(amic acid)s, followed by chemical imidization. The resulting polymers were characterized and their physical properties including thermal behavior, thermal stability, solubility and inherent viscosity were studied. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Summary: A new diamine monomer containing a crown ether was made to react with commercial diacid chlorides and dianhydrides to yield new aromatic polyamides and polyimides. The crown ether moiety was introduced as a pendant group so that the polymers showed enhanced solubility in organic solvents, good thermal properties (high transition temperatures and high thermal stability), and good film‐forming ability.

The new aromatic polyamides and polyimides bearing a benzo‐15‐crown‐5‐pendant group synthesized here.  相似文献   


15.
A diamine was synthesized by two successive reactions.Nucleophilic reaction of 4-hydroxybenzoic acid with terephthaloyl chloride yielded terephthaloyl bis(4-oxybenzoic) acid.Then reaction of this compound with 1,8-diamino-3,6- dioxaoctane via Yamazaki method resulted in preparation of diamine named terephthalic acid bis(4-{2-[2-(2-amino ethoxy)ethoxy]ethyl carbamoyl}phenyl) ester.After fully characterization it was used to prepare new polyimides through polycondensation with different dianhydrides using trimethylchlorosilane.Characterization of polymers was achieved by common methods and their physical properties including inherent viscosity,thermal behavior,thermal stability,crystallinity and solubility were studied.Prepared polyimides showed improved solubility and good thermal stability.  相似文献   

16.
A series of wholly aromatic sulfonated poly(ether amide)s (SPEAs) containing a sulfonic acid group on the dicarbonyl aromatic ring were prepared via a polycondensation reaction of sulfonated terephthalic acid (STA), terephthalic acid (TA), and aromatic diamine monomers. The degree of sulfonation was readily controlled by adjusting the monomer feed ratio of STA and TA in the polymerization process, and randomly sulfonated polymers with an ion exchange capacity (IEC) of 1.0–1.8 mequiv/g were prepared using this protocol. The chemical structures of randomly sulfonated polymers were characterized using NMR and FT‐IR spectroscopies. Gel permeation chromatography analysis of SPEAs indicated the formation of high‐molecular‐weight sulfonated polymer. Tough and flexible SPEA membranes were obtained from solution of N,N‐dimethylacetamide, and thermogravimetric analysis of these membranes showed a high degree of thermal stability. Compared with previously reported sulfonated aromatic polyamides, these new SPEAs showed a significantly lower water uptake of 10–30%. In proton conductivity measurements, ODA‐SPEA‐70 (IEC = 1.80 mequiv/g), which was obtained from polycondensation of 4,4′‐oxydianiline and 70 mol % STA, showed a comparable proton conductivity (105 mS/cm) to that of Nafion 117 at 80 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 485–496, 2009  相似文献   

17.
Aromatic-aliphatic polyamides containing a biphenyl mesogen were prepared by both interfacial and solution polymerization reactions. Substitution of the amide nitrogen with methyl groups yielded polymers with significantly different properties than the unsubstituted polyamides. The methyl-substituted polyamides had improved thermal stability, significantly lower meltin temperatures, and greater solubility in common solvents. Copolyamides were also synthesized which contained different flexible spacer units that varied in the number of methylene groups. No evidence for the presence of liquid crystalline phases could be obtained in either the unsubstituted polyamides or polyamides containing N-methylated amide units. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
A new cardo diamine monomer 3, 3‐bis‐[4‐{2′trifluoromethyl 4′‐(4″‐aminophenyl) phenoxy} phenyl]‐2‐phenyl‐2, 3‐dihydro‐isoindole‐1‐one ( 4 ) has been synthesized from potentially cheap phenolphthalein as the starting material. This diamine was used for the synthesis of a new poly(ether amide) and two co‐poly(ether amide)s using 4, 4′‐diaminodiphenyl ether (ODA) as co‐monomer by direct solution polycondensation with 5‐t‐butyl iso‐phthalic acid. These new polymers showed inherent viscosities of 0.48–0.62 dL g?1. The resulting poly(ether amide) and co‐poly(ether amide)s were readily soluble in polar aprotic solvents like NMP, DMF, DMAc, DMSO, and pyridine. The polymers have been fully characterized by 1H and 13C NMR, FTIR spectroscopy, and elemental analysis. These polymers showed glass transition temperatures in the range of 267–310°C. Thermogravimetric analysis indicated high thermal stability of these polymers at 5 and 10% weight loss temperature in air above 357°C and 419°C, respectively. The poly(ether amide) films cast from DMAc were flexible with tensile strength up to 91 MPa, elongations at break up to 11%, and modulus of elasticity up to 1.82 GPa. X‐ray diffraction measurements indicate the amorphous nature of the poly(ether amide)s. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A novel aromatic diacid, 4, 4′-bis[2-(4-carboxyphenyl)phthalazin- 1-one-4-yl]-bisphenyl ether III, containing bisphthalazinone and ether linkages was prepared from nucleophilic substitution of p-chlorobenzonitrile with the bisphenol-like monomer I, followed by alkaline hydrolysis of the intermediate dinitrile II. A series of poly(ether amide)s containing bisphthalazinone and ether linkages derived from diacid III and aromatic diamines were synthesized by one-step solution condensation polymerization using triphenyl phosphite and pyridine as condensing agents. Moreover, the properties of poly(ether amide)s including thermal stability,solubility and crystallinity were also studied.  相似文献   

20.
A new pyridine-based diacid containing ether and imide units was synthesized via reaction of 5-amino-1-naphthol with 2,6-dichloropyridine in the presence of potassium carbonate in N-methyl-2-pyrrolidone (NMP), and subsequent reaction of the obtained diamine with 2 mol of trimellitic anhydride. A series of poly(ether imide ester)s was synthesized by the polycondensation reactions of the prepared diacid with different diols via high temperature solution polycondensation reaction method. All the products were fully characterized by common spectroscopic methods. The polymers were examined by elemental analysis, IR and 1H NMR spectra, inherent viscosity, X-ray diffraction, DSC, TGA and DMTA and their properties were studied. Polymers showed high thermal stability and good solubility in polar aprotic solvents. The Structure-property relations of the polymers were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号