首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites   总被引:1,自引:0,他引:1  
The thermal degradation mechanism of a novel polyvinyl alcohol/silica (PVA/SiO2) nanocomposite prepared with self-assembly and solution-compounding techniques is presented. Due to the presence of SiO2 nanoparticles, the thermal degradation of the nanocomposite, compared to that of pure PVA, occurs at higher temperatures, requires more reaction activation energy (E), and possesses higher reaction order (n). The PVA/SiO2 nanocomposite, similar to the pure PVA, thermally degrades as a two-step-degradation in the temperature ranges of 300-450 °C and 450-550 °C, respectively. However, the introduction of SiO2 nanoparticles leads to a remarkable change in the degradation mechanism. The degradation products identified by Fourier transform infrared/thermogravimetric analysis (FTIR/TGA) and pyrolysis-gas chromatography/mass spectrometric analysis (Py-GC/MS) suggests that the first degradation step of the nanocomposite mainly involves the elimination reactions of H2O and residual acetate groups as well as quite a few chain-scission reactions. The second degradation step is dominated by chain-scission reactions and cyclization reactions, and continual elimination of residual acetate groups is also found in this step.  相似文献   

2.
A series of novel polydimethylsiloxane/montmorillonite (PDMS/MMT) nanocomposites was prepared. The thermal degradation behaviour of these nanocomposites was studied by means of Thermal Volatilization Analysis (TVA) and Thermogravimetric Analysis (TGA). The major degradation products were identified as cyclic oligomeric siloxanes from D3 to D7, and higher oligomeric siloxane residues. Other minor degradation products include methane, bis-pentamethylcyclotrisiloxane, propene, propanal, benzene and dimethylsilanone. The results demonstrate that the nanoclay significantly alters the degradation behaviour of the PDMS network, modifying the profile of the thermal degradation and reducing the overall rate of volatiles evolution. The results also indicate that the nanoclay promotes the formation of dimethylsilanone and benzene by inducing low levels of radical chain scission.  相似文献   

3.
The non-isothermal degradation of poly(3-hydroxybutyrate) (PHB) and silver sulfide/poly(3-hydroxybutyrate) (Ag2S/PHB) nanocomposites was investigated using thermogravimetric (TG) analysis. In the composite materials, Ag2S caused the degradation of PHB at a lower temperature as opposed to that of neat PHB. Moreover, an increase Ag2S loading in the PHB decreased the onset temperature (Tonset) of thermal degradation, whereas it was raised upon augmenting the heating rate. From Kissinger plots, the observed trend of the degradation activation energy, Ed, was attributed to polymer-particle surface interactions and the agglomeration of Ag2S. The thermal degradation rate constant, k, was linearly related to the Ag2S loading in PHB. Thus, the Ag2S nanoparticles effectively catalyzed the thermal degradation of PHB in the Ag2S/PHB nanocomposites. Differential scanning calorimetry (DSC) data also supported the catalytic property of Ag2S.  相似文献   

4.
Polypropylene (PP)-montmorillonite nanocomposites have been prepared using isotactic PP homopolymers with different rheological properties, and a maleic anhydride grafted PP. Morphology and structure of the composites were investigated by using X-ray techniques (WAXD, SAXS) and transmission electron microscopy (TEM). The absence of pristine clusters of the clay and the presence of intercalated and exfoliated structures were shown for all the investigated samples. The nanocomposite prepared by using maleic anhydride grafted PP showed a widespread exfoliation. The thermal behaviour and degradation have been studied by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The incorporation of the montmorillonite improves the thermal stability in air atmosphere of all the investigated PPs, thanks to a physical barrier effect of the silicate layers.  相似文献   

5.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

6.
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed through increased maximum degradation temperature and suppressed mass loss corresponding to initial degradation stage with carbon nanotubes and nanoclays, respectively. Possibility of reactions of melamine and/or melamine derivatives and interactions between carbonyl groups of PMMA and phosphinic acid leading to thermally more stable products was increased owing to the barrier effect of filler nanoparticles. In the presence of NC better flame retarding characteristics was detected as anhydride formation, leading to charring being more effective.  相似文献   

7.
A series of nanocomposites consisted of poly(butylene succinate) (PBSu) and fumed silica nanoparticles (SiO2) were prepared using the in situ polymerization technique. The amount of SiO2 used directly affected the final molecular weight of the prepared polyesters. At a low SiO2 content (0.5 wt.%) the molecular weight obtained was higher compared to neat PBSu, however at higher concentrations this was gradually reduced. The melting point of the matrix remained unaffected by the addition of the nanoparticles, in contrast to the crystallinity, which was dramatically reduced at higher SiO2 contents. This was mainly due to the extended branching and cross-linking reactions that took place between the carboxylic end groups of PBSu and the surface silanols of the nanoparticles. Thermal degradation of the PBSu/SiO2 nanocomposites was studied by determining theirs mass loss during heating. From the variations of the activation energies, calculated from the thermogravimetric curves, it was clear that nanocomposites containing 1 wt.% SiO2 content had a higher activation energy compared to pure PBSu, indicating that the addition of the nanoparticles could slightly increase the thermal stability of the matrix. However, in PBSu/SiO2 nanocomposite containing 5 wt.% SiO2 the activation energy was smaller. This phenomenon should be attributed to the existence of extended branched and cross-linked macromolecules, which reduce the thermal stability of PBSu, rather than to the addition of fumed silica nanoparticles.  相似文献   

8.
A predictive mathematical model to describe mass loss profiles of flame-retardant (FR) containing epoxy resin formulations is proposed. Mass loss is due to thermal degradation of the constituent components and can be described by a generic kinetic scheme with a given set of thermokinetic constants in the form of ordinary differential equations. The scope of this work is to determine the kinetic parameters of the thermal degradation of a known flame-retarded epoxy resin composition by using thermogravimetric analysis and using the acquired data to predict the degradation profiles for other formulations. The mass loss profiles of Visil and intumescent epoxy resin containing formulations were predicted by solving coupled systems of ordinary differential equations and then using Powell minimisation to find the optimal Arrhenius parameters, taking into account the mass ratio of the components in the mixture. The calculated kinetic constants for one formulation (85% resin-15% FR additives) are used to predict the mass loss profiles for other formulations (80% resin-20% FR additives and 90% resin-10% FR additives) with the assumption that the degradation mechanism does not change. The predicted thermal degradation profiles are compared with experimental data acquired using standard laboratory equipment in order to validate the proposed mechanisms. The kinetic parameters obtained adequately describe mass loss history of composite materials studied, even when extremely simplified kinetic schemes have been used.  相似文献   

9.
The effects of sepiolite modified with γ-aminopropyltriethoxylsilane (KH550-Sp) on thermal properties of polyurethane (PU) nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and tensile test. The DSC results showed that the glass transition temperature of hard segments in PU/KH550-Sp nanocomposite increased with the increase of KH550-Sp, because sepiolite restricted the formation of hydrogen bonding within hard segments of polyurethane. TG results revealed that the thermal stability of PU was improved by KH550-Sp, and the onset decomposition temperature for PU nanocomposites with a KH550-Sp content of 3 wt% was about 20 °C higher than that for pure PU. The tensile properties of pure PU and nanocomposites before and after ageing 120 °C for 72 h were determined, and it was observed that the percentage loss in tensile strength decreased with the addition of KH550-Sp because of an oxidation barrier of KH550-Sp confirmed by ATR-FTIR.  相似文献   

10.
Atactic polypropylene was subject to thermal treatment the temperature range 200–260°C for 2–4 h. Polymer structure changes assessment was made by derivatograph.  相似文献   

11.
High temperature degradation of a fluoroelastomer and its nanocomposites was carried out from room temperature to 700 °C using thermogravimetric analysis (TGA) in nitrogen and oxygen atmospheres. The presence of the unmodified nanoclay enhanced the onset of degradation in both the environments, because of polymer-filler interaction, exfoliation, uniform dispersion and high thermal stability of the layered silicates. In the derivative curve, there was a single Tmax, indicating one-stage degradation for all the samples. The non-isothermal activation energy of degradation was determined using the Kissinger and the Flynn-Wall-Ozawa methods. The nanocomposites showed higher activation energy than the neat elastomer. The activation energy of degradation, as observed by isothermal kinetics, was 165, 168 and 177 kJ mol−1 for the neat elastomer, modified and unmodified clay filled samples, respectively. Intrinsic viscosity, measured after low temperature ageing (125-175 °C) showed that the viscosity values were higher for the nanocomposites. The mechanism of degradation is discussed.  相似文献   

12.
This paper explores the relationship between the shapes of temperature-time curves obtained from experimental data recorded by means of constant rate thermal analysis (CRTA) and the kinetic model followed by the thermal degradation reaction. A detailed shape analysis of CRTA curves has been performed as a function of the most common kinetic models. The analysis has been validated with simulated data, and with experimental data recorded from the thermal degradation of polytetrafluoroethylene (PTFE), poly(1,4-butylene terephthalate) (PBT), polyethylene (PE) and poly(vinyl chloride) (PVC). The resulting temperature-time profiles indicate that the studied polymers decompose through phase boundary, random scission, diffusion and nucleation mechanisms respectively. The results here presented demonstrate that the strong dependence of the temperature-time profile on the reaction mechanism would allow the real kinetic model obeyed by a reaction to be discerned from a single CRTA curve.  相似文献   

13.
In this study, morphological properties of polypropylene (PP)/ethylene vinyl acetate copolymer (EVA) (75/25 wt/wt) blend-based nanocomposites containing various amounts of organically modified montmorillonite (OMMT) were primarily investigated. The incorporation of compatibilizer into nanocomposites decreased EVA droplet size in PP matrix while increasing compatibilizer/OMMT ratio showed a dual behavior with respect to the variations of OMMT interlayer spacing. By a rough estimation it was found that at EVA droplet size of Dn = 0.43 μm, the highest OMMT interlayer spacing would be acheived. Increasing Dn had a negative effect on the OMMT interlayer spacing. Activation energy of thermal/thermo-oxidative degradation based on Flynn model was obtained. Isothermal degradation test was also performed and desired temperature range for predicting degradation behavior was obtained by means of a free prediction model. An attempt was made to establish a correlation between morphological and thermal/thermo-oxidative parameters and also charred residue morphology. A mechanism for degradation process was proposed according to the changes of chemical bonds during the degradation process probed by FTIR analysis.  相似文献   

14.
Increasing the thermal stability of organically-modified layered silicates is one of the key points in the successful technical application of polymer-layered silicate nanocomposites on the industrial scale. To circumvent the detrimental effect of the lower thermal stability of alkyl ammonium-treated montmorillonite, a series of alkyl-imidazolium molten salts were prepared and characterized by elemental analysis, thermogravimetry (TGA) and thermal desorption mass spectroscopy (TDMS). The effect of counter ion, alkyl chain length and structural isomerism on the thermal stability of the imidazolium salts was investigated. Alkyl-imidazolium-treated montmorillonite clays were prepared by ion exchange of the imidazolium salts with Na-montmorillonite. These organically-modified clays were characterized by X-ray diffraction (XRD), TDMS and thermogravimetry coupled with Fourier transform infrared spectroscopy (TGA-FTIR), and compared to the conventional quaternary alkyl ammonium montmorillonite. Results indicate that the counter ion has an effect on the thermal stability of the imidazolium salts, and that imidazolium salts with PF6, N(SO2CF3)2 and BF4 anions are thermally more stable than the halide salts. A relationship was observed between the chain length of the alkyl group and the thermo-oxidative stability; as the chain length increased from propyl, butyl, decyl, hexadecyl, octadecyl to eicosyl, the stability decreased. The results also show that the imidazolium-treated montmorillonite has greater thermal stability compared to the imidazolium halide. Analysis of the decomposition products by FTIR provides an insight about the decomposition products which are water, carbon dioxide and hydrocarbons.  相似文献   

15.
Polypropylene has been compounded with a commercial organoclay both in the absence and in the presence of hydrogenated oligo(cyclopentadiene) (HOCP) as a compatibiliser. The characteristics and the properties of the nanocomposites were evaluated and compared. HOCP favours the intercalation of the polypropylene in the organoclay galleries and enables a more homogeneous dispersion of the nanoclay throughout the polymer matrix. In the compatibilised nanocomposite, the diluent effect ascribed to the HOCP component is associated with the nucleating action of the nanoclay, resulting in the development of the β-crystalline form of the polypropylene. The presence of HOCP preserves the molecular weight of the polymer during the processing and gives good overall mechanical properties to the compatibilised nanocomposite. The thermo-oxidative degradation of the polypropylene is strongly delayed in the compatibilised nanocomposite.  相似文献   

16.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

17.
Combined kinetic analysis has been applied for the first time to the thermal degradation of polymeric materials. The combined kinetic analysis allows the determination of the kinetic parameters from the simultaneous analysis of a set of experimental curves recorded under any thermal schedule. The method does not make any assumptions about the kinetic model or activation energy and allows analysis even when the process does not follow one of the ideal kinetic models already proposed in the literature. In the present paper the kinetics of the thermal degradation of both polytetrafluoroethylene (PTFE) and polyethylene (PE) have been analysed. It has been concluded, without previous assumptions on the kinetic model, that the thermal degradation of PTFE obeys a first order kinetic law, while the thermal degradation of PE follows a diffusion-controlled kinetic model.  相似文献   

18.
Shear-induced isothermal crystallization in iPP based nanocomposites with organo-modified montmorillonite was followed by light depolarization technique. Prior to the crystallization, samples were sheared at 1 or 2 s−1 for 10 s in a plate-plate system at crystallization temperature of 136 °C. Structure of the solidified specimens was investigated by light microscopy and electron microscopy, X-ray techniques and IR spectroscopy. Strong enhancement of the nucleation and crystallization after shearing was observed in the compatibilized nanocomposites with the clay. Clay exfoliation was found to accelerate strongly the shear-induced nucleation and overall crystallization. However, the sheared samples exhibited only weak orientation of α crystals with (0 4 0) crystallographic planes parallel to shearing direction that resulted probably from a small population of oriented crystals that formed due to shear-induced orientation of iPP chains and served as nuclei for further nearly isotropic growth.  相似文献   

19.
The mechanism of thermal degradation of several substituted polyhedral oligomeric silsesquioxanes (POSS) cages is studied in this work.Hydrogen POSS and methyl POSS shows incomplete sublimation on heating, both in inert atmosphere and in air. Isobutyl and octyl substituted POSS undergo an almost complete evaporation when heated in inert atmosphere. In air, oxidation competes with volatilization, producing a considerable amount of silica-like residue on heating up to 800 °C.Phenyl POSS shows a higher thermal stability than saturated aliphatic POSS and limited volatility, producing a ceramic residue at high yield on heating in nitrogen, composed of a silica containing a considerable amount of free-carbon. A lower amount of residue is shown after heating in air, corresponding to the POSS Si-O fraction.A vinyl POSS cage/network resin is also studied, in comparison to above materials, showing the highest ceramic yield.  相似文献   

20.
Multiwall carbon nanotubes (MWNT)/linear low density polyethylene (LLDPE) nanocomposites were studied in order to understand the stabilisation mechanism for their thermal and oxidative degradation. Thermogravimetry coupled with infrared evolved gas analysis and pyrolysis gas chromatography-mass spectrometry demonstrate that MWNT presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. Whereas thermal oxidative degradation in air is delayed by about 100 °C independently from MWNT concentration in the range used here (0.5-3.0 wt.%). The stabilisation is due to formation of a thin protective film of MWNT/carbon char composite generated on the surface of the nanocomposites is shown by SEM and ATR FTIR of degradation residues. The film formation mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号