首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Crystallization of a polystyrene-b-poly(ethylene oxide)-b-polystyrene (S-EO-S) triblock copolymer, S40EO136S40, with lamellar morphology in the melt and low glass transition temperature (Tg=47 °C) of the S block was studied. The triblock copolymer was cooled from ordered melt and isothermal crystallization was conducted at crystallization temperatures (Tc) near the Tg of the S block. It is found that crystallization behavior of S40EO136S40 strongly depends on Tc. When Tc is far below Tg, an Avrami exponent n=0.5 is observed, which is attributed to diffusion-controlled confined crystallization. As Tc slightly increases, the Avrami exponent is 1.0, indicating that crystallization is confined and crystallization rate is determined by the rate of homogeneous nucleation. When Tc is just below the Tg of the S block, crystallization tends to become breakout and accordingly Avrami exponent changes from 1.0 to 3.2. Crystallinity and melting temperature of the EO block in breakout crystallization are slightly higher than those in confined crystallization. Time-resolved small and wide angle X-ray scattering (SAXS/WAXS) were used to monitor isothermal crystallization of S40EO136S40. It shows that the long period is constant in confined crystallization, but it gradually increases during breakout crystallization. WAXS result reveals that confined or breakout crystallization has no effect on the crystal structure of the EO block.  相似文献   

2.
3.
Four-armed amphiphilic block copolymers polystyrene-b-poly(N-isopropyl acrylamide) (PSt-b-PNIPAAM)4 were synthesized by atom transfer radical polymerization (ATRP) in two steps. Star narrow dispersed polystyrene, (PSt-Br)4, with controlled number-average molecular weight was firstly synthesized by ATRP of styrene (St) using pentaerythritol tetrakis (2-bromoisobutyrate) (4Bri-Bu) as four-armed initiator. Then, (PSt-b-PNIPAAM)4 was prepared using (PSt-Br)4 as macroinitiator by ATRP. The structures of (PSt-Br)4 and (PSt-b-PNIPAAM)4 were confirmed by characterization by nuclear magnetic resonance (1H NMR). The apparent viscosity of the four-armed (PSt-b-PNIPAAM)4 was significantly lower than that of the linear PSt-b-PNIPAAM with the same amount of repeat units of PSt and PNIPAAM. The self-assembly behavior of the four-armed amphiphilic block copolymers (PSt-b-PNIPAAM)4 in mixed solution (DMF/H2O) and the lower critical solution temperature (LCST) of the resulting micelles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and UV-VIS spectroscopy. The results show that the size of the mono-dispersed spherical micelles decreased with the increment of the chain length of PNIPAAM in the block copolymers, while LCST increased.  相似文献   

4.
Amphiphilic biodegradable poly(CL-b-PEG-b-CL) triblock copolymers have been successfully prepared by the ring-opening polymerization of ε-caprolactone (CL) employing yttrium tris(2,6-di-tert-butyl-4-methylphenolate) [Y(DBMP)3] as catalyst and double-hydroxyl capped PEGs (DHPEG) as macro-initiator. The triblock architecture, molecular weight, thermal and crystallization properties of the copolymers were characterized by NMR spectra, SEC, DSC and WAXD analyses. The isothermal crystallization behavior of the copolymers was investigated by POM analysis in detail, which is greatly influenced by the length of PCL and PEG blocks. On the POM micrograph of PEG10,000-(PCL8600)2, a unique morphology of concentric spherulites was observed due to the sequent crystallization of the PCL and PEG blocks.  相似文献   

5.
Random ethylene/1-hexene copolymers with the 1-hexene content in the range from 2 to 28 mol% were produced with a novel post-metallocene catalyst and analyzed by three techniques, FTIR, 13C NMR, and DSC. The 1-hexene content and the sequence distribution in the copolymers were determined by means of FTIR-M and 13C NMR. The crystallization behavior of the copolymers was studied by DSC under dynamic and isothermal conditions; the Avrami model was used to analyze the crystallization kinetics. It was found that both the 1-hexene content and the crystallization temperature affect the relative crystallinity. The bulk crystallization rate decreases with the 1-hexene content and reduces exponentially with an increase of T c. The melting behavior of isothermally crystallized samples was also investigated and it was found that the melting temperatures of the copolymers under equilibrium conditions were related to the composition.  相似文献   

6.
《中国化学快报》2023,34(6):107690
A series of linear poly(ethylene oxide)-b-poly(4-vinylbenzyl chloride)-b-poly(4‑tert-butylstyrene) (PEO113-b-PVBC130-b-PtBSx or E113V130Tx) triblock terpolymers with various lengths x (=20, 33, 66, 104, 215) of PtBS block were synthesized via a two-step reversible addition-fragmentation chain transfer (RAFT) polymerization. The E113V130Tx triblock terpolymers were non-crystalline because the PVBC and PtBS blocks strongly hindered the crystallization of PEO block. The effects of PtBS block length x on the phase structures of E113V130Tx triblock terpolymers were investigated by combined techniques of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). It was found that with increasing x from 20 to 215, the phase structure of E113V130Tx triblock terpolymers became more ordered and changed from disordered structure, hexagonally-packed cylinder (HEX), hexagonally perforated layer (HPL), to lamellar (LAM) phase structures. Temperature-variable SAXS measurements showed that the HEX, HPL and LAM phase structures obtained for E113V130T66, E113V130T104 and E113V130T215 by thermal annealing, respectively, were thermodynamically stable in the temperature range of 30–170 °C.  相似文献   

7.
Poly(L-lactide)-based (PLLA) poly(ester-urethane)s are particularly relevant and gain significant attention due to their environment-friendly degradability and elastomeric shape memory capability. The tensile properties, resilience and degradation are strongly affected by their crystallization. This work was to investigate crystallization behaviors of the poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) (PLLA-PBAPLLA) based thermoplastic polyurethane elastomers (PLAEUs) we synthesized previously. Dynamic scanning calorimetry (DSC) and polarized optical microscopy (POM) in combination with Avrami, Jezioney and Hoffman-Weeks models were used to analyze the impact of the PLLA block length on the crystallization temperature Tc, degree of crystallinity Xc, nucleation and spherulite growth mode and crystallization regime kinetics of the PLAEUs. The results indicate the low melting point poly(butylene adipate) (PBA) block resides in the amorphous domains while the PLLA block resides in both crystalline and amorphous phases. The Xc of the PLAEUs increase with the increased length of the PLLA block (i.e. higher content of PLLA block). The analyses with Avrami and Jezioney models show the PLAEU copolymers follow a disc-like spherulite growth. The covalently bonded PBA block decreases both nucleation velocity and spherulite growth rate in the isothermal crystallization. Such an impact is lessened as PLLA block length increases. The PLLA homopolymers demonstrate crystallization regime transition from II to III at a certain Tc of isothermal crystallization, while the crystallization regime kinetics of PLLA block in the PLAEUs are explained by a single regime III at low molecular weights of PLLA and the transition is restored as the PLLA block length increases (i.e. regime II to III).  相似文献   

8.
The thermal properties of caprolactam/long chain lactam copolymer were studied with a Perkin-Elmer DSC 7. The melting point (T m), heat of fusion (δH m), crystalline degree (X c), crystallization temperature (T c) and glass transition temperature (T g) of the copolymers increase with decrease of the content of the log chain lactam. From the changes in the mechanical properties with corresponding changes in the thermal properties, it is clear that the copolymers are thermal plastic and elastic. In addition, it is found that the results at a heating rate of 10 deg·min?1 are almost the same as that at 20 deg·min?1 after thermal history is erased.  相似文献   

9.
The unusual dependence of the melting peak temperature of the species recrystallized during DSC scans on the isothermal crystallization temperature (T c ) is discussed for isotactic polypropylene samples. It is pointed out that such a phenomenon is not due to superheating effects; it is believed to be accounted for by assuming that the rates of the recrystallization phenomena at the same temperature are higher for samples obtained at higherT c values.  相似文献   

10.
In this work,the crystallization of immiscible polypropylene(PP)/polybutene-1(PB)blends,in particular the effect of crystal morphology of PP(HTC,high Tm component)on the subsequent crystallization behavior of PB(LTC,low Tm component)was studied.Herein,we firstly indicated that PP/PB blends were not completely compatible but characterized as the LCST-like phase diagram above the melting temperature of PP.Crystallization of PP at different crystallization temperatures brought about different PP crystal morphologies and PB was segregated and confined at different locations.Much larger-sized domain of PB component appeared in PP spherulites resulting from the effects of non-negligible phase separation and the slower PP crystallization rate as PP crystallized at high temperature.As temperature continued to fall below Tm of PB,the fractionated and confined crystallization of PB occurred in the framework of PP spherulites,reflected by the decreased crystallization temperature(Tc)of PB and the formation of form I′beside form II.Notably,if PP previously crystallized at high Tc,fractionated crystallization of PB became predominant and confined crystallization of PB became weak due to the much wider droplet-size distribution of PB domains.  相似文献   

11.
陈尔强 《高分子科学》2013,31(6):946-958
Crystal orientation and melting behavior of poly(ε-caprolactone) in a diblock copolymer of poly(ε-caprolactone)-block-poly(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PCL-b-PMPCS) was investigated. The degrees of polymerization of the PCL and PMPCS block are 200 and 98, respectively. With the PMPCS in a columnar liquid crystalline phase, the diblock is rod-coil one, which exhibits a lamellar phase morphology with the PCL layer thickness of 15.2 nm. Since the glass transition temperature of PMPCS block is much higher than the melting temperature of PCL, the crystallization of PCL is in a one-dimensionally "hard" confinement environment. Mainly on the basis of two-dimensional wide-angle X-ray diffraction experiments, we identified the orientation of PCL isothermally crystallized at various crystallization temperatures (Tcs). At high Tcs (Tc≥10℃), the c-axis of the PCL crystal is along the layer normal of the microphase-separated sturcture. Decreasing Tc can result in the tilting of PCL c-axis with respect to the layer normal. The lower the Tc is, the more the c-axis inclines. Meanwhile, the b-axis of PCL remains perpendicular to the layer normal. At a very low Tc of -78℃, the orientation of the PCL crystals is completely random. For the samples isothermally crystallized at Tc≤10℃, double melting behavior can be observed. While the low temperature endotherm reflects the melting of the crystals originally formed at the Tc applied, the high temperature one is associated with the crystals subjected to the process of recrystallization/reorganization upon heating due to the annealing effect.  相似文献   

12.
A new biodegradable polymer system, poly(p-dioxanone) (PPDO)/poly(ethylene glycol) (PEG) blend was prepared by a solvent casting method using chloroform as a co-solvent. The PPDO/PEG blends have different weight ratios of 95/5, 90/10, 80/20 and 70/30. Crystallization of homopolymers and blends were investigated by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). When 5% of PEG was blended, the crystallization exothermal peaks (Tc) of PPDO increased sharply and the crystallization exothermal peaks (Tc) of PEG decreased slightly compared with the homopolymers. The crystallization rates of both components increased, and caused greater relative crystallization degree (Xt%). But when the content of PEG was more than 5%, the crystalline behaviors of blends had no more significant changes accordingly. The melting points of each sample varied little over the entire composition range in this study. The nonisothermal crystallization of PPDO homopolymer and blend (PPDO/PEG = 70/30) were also studied by DSC. The crystallization began at a higher temperature when the cooling rates were slower. The nonisothermal crystallization kinetics of blends was analyzed by Ozawa equation. The results showed that the Ozawa equation failed to describe the whole crystallization of the blend, but Mo equation could depict the nonisothermal crystallization perfectly.  相似文献   

13.
14.
Calorimetric and dielectric results for crystallizable poly(n-alkyl methacrylates) (PnAMA) with C=12, 16 and 18 alkyl carbons per side chain are presented. Degree of crystallization Dcal and melting peak temperature TM are estimated from conventional DSC measurements. For poly(n-hexadecyl methacrylate) (C=16) the influence of isothermal crystallization is studied by DSC as well as TMDSC. Changes in dielectric relaxation strength Δε and α peak shape during crystallization are investigated. Effects of side chain crystallization on the complex dynamics of PnAMA are discussed. The results are related to the relaxation behavior of lower nanophase-separated PnAMA with two co-existing glass transitions, the conventional glass transition (a or α) and the polyethylene-like glass transition (αPE) within alkyl nanodomains formed by aggregated alkyl rests. It is shown that amorphous as well as semicrystalline PnAMA can be understood as nanophase-separated polymers with alkyl nanodomains having a typical dimension of 1-2 nm. The results are compared with the predictions of simple morphological pictures for side chain polymers. X-ray scattering data for the amorphous and semicrystalline PnAMA are included in the discussion. Common aspects of nanophase-separated systems in both states as well as differences caused by crystallization are discussed. Indications for the existence of rigid amorphous regions are compiled. Different approaches to explain a similar increase of Tg(αPE)—the glass temperature of the amorphous alkyl nanodomains—and TM—the melting temperature of crystalline alkyl nanodomains—with side chain length are considered. Pros and cons of both approaches, based on increasing order within the alkyl nanodomains and confinement effects in nanophase-separated systems, are discussed. Main trends concerning crystallization and cooperative dynamics are compared with those in other systems with self-assembled nanometer confinements like microphase-separated blockcopolymers or semicrystalline main chain polymers.  相似文献   

15.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

16.
The melting and crystallization behaviors of lithium aluminosilicate (LAS) glasses containing Y2O3 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and viscosity test. Effects of Y2O3 on the viscosity of LAS glasses were investigated from the softening point temperature to melting temperature. It was indicated that the introduction of yttria effectively decreased the melting temperature and viscosity of LAS glasses. The DTA and XRD results showed that yttria controlled the crystallization of LAS glasses by increasing the crystallization peak temperature (Tp) and activation energies (E), and the main crystalline phase of glass-ceramics was β-spodumene.  相似文献   

17.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

18.
Summary: Various crystalline textures have been identified in a crystallizable block copolymer system, polystyrene‐block‐[syndiotactic poly(propylene)] (PS‐sPP), having a glass‐transition temperature of PS (Tg,PS) located in the midst of the sPP crystallization window. A confined morphology for the crystallization of sPP was observed while the crystallization temperature of sPP (Tc,sPP) was less than Tg,PS. A further increase in Tc,sPP could lead to a breakout in nanostructure. This study revealed the Tg effect on crystallization‐induced morphological changes of block copolymers from confinement to breakout.

TEM images and one‐dimensional SAXS profiles of PS‐sPP isothermally crystallized at TODT > Tg,PS > Tc,sPP (top) and TODT > Tc,sPP > Tg,PS (bottom).  相似文献   


19.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

20.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号