首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diglycidylether sulfone monomer (sulfone type epoxy monomer, SEP) was prepared from bis(4-hydroxyphenyl) sulfone (SDOL) and epichlorohydrin without any NaOH or KOH as basic catalyst. FT-IR, 1H NMR, 13C NMR and mass spectroscopic instruments were utilized to determine the structure of the SEP monomer. The cured SEP epoxy material exhibited not only a higher Tg (163.81 °C) but also a higher Tg than pristine DGEBA (from 111.25 °C to 139.17 °C) when the SEP monomer moiety had been introduced into the DGEBA system. The thermal stability of cured epoxy herein was investigated by thermogravimetric analysis (TGA). The results demonstrated that the sulfone group of the cured SEP material decomposed at lower temperatures and formed thermally stable sulfate compounds, improving char yield and enhancing resistance against thermal oxidation. Additionally, the IPDT and char yield of the cured SEP epoxy (IPDT = 1455.75, char yield = 39.67%) exceeded those of conventional DGEBA epoxy (IPDT = 667.27, char yield = 16.25%).  相似文献   

2.
Poly(N,N-diethylacrylamide) with a terminal hydroxyl end group (PDEA-OH) was synthesized by radical telomerization of N,N-diethylacrylamide (DEA) monomer using 2-hydroxyethanethiol as a chain transfer agent. Macromonomer of thermo-sensitive PDEA was synthesized by condensation reaction of PDEA-OH with acryloyl chloride. The macromonomer was characterized by FTIR and 1H NMR, and the molecular weight was determined by GPC. Thermo- and pH-sensitive comb-type grafted poly(N,N-diethylacrylamide-co-acrylic acid) (PDEA-co-AA) hydrogels (GHs) were successfully prepared by grafting PDEA chains with freely mobile ends onto the backbone of a cross-linked (PDEA-co-AA) network. The results showed that the deswelling behavior of the hydrogels was dependent on the test temperature. At 45 °C (beneath the VPTT of the hydrogels), both the normal-type hydrogels (NHs) and comb-type grafted P(DEA-co-AA) hydrogels had lower deswelling rates. While at 60 °C (far beyond the VPTT of the hydrogels), the deswelling rates of the GHs were faster than that of the NHs. Furthermore, pulsatile stimuli-responsive studies indicated that the GHs had excellent thermo-reversibility and were superior to the NHs in the magnitude of their swelling ratios to temperature changes. However, the reversibility to pH changes was poor for both the NHs and the GHs.  相似文献   

3.
In situ polymerized PS/EPDM blends were prepared by dissolving poly(ethylene-co-propylene-co-2-ethylidene-5-norbornene) (EPDM) in styrene monomer, followed by bulk polymerization at 60 °C and 80 °C . EPDM has excellent resistance to such factors as weather, ozone and oxidation, attributed to its non-conjugated diene component, and it could be a good alternative for substituting polybutadiene-based rubbers in PS toughening. The in situ polymerized blends were characterized by dynamic mechanical analysis, thermogravimetric analysis, gel permeation chromatography, and tensile and Izod impact resistance tests. The PS/EPDM blends are immiscible and present two phases, a dispersed elastomeric phase (EPDM) in a rigid PS matrix whose phase behavior is strongly affected by the polymerization temperature. Mechanical properties of the blends are influenced by the increase in the average size of EPDM domains with the increase in the polymerization temperature and EPDM content. The blends polymerized at 60 °C containing 5 wt% of EPDM presents an increase in the impact resistance of 80% and containing 17 wt% of EPDM presents an increase in the strain at break of 170% in comparison with the value of PS. The blend polymerized at 80 °C containing 17 wt% of EPDM presents an increase in the strain at break of 480% and in impact resistance of 140% in comparison with the value of PS.  相似文献   

4.
A series of 4-(2-phenylethynyl)-1,8-naphthalic anhydride (PENA) endcapped imide oligomers with different chemical backbones and calculated number average molecular weights (Calc’d Mn) were successfully synthesized and characterized. The PENA-endcapped imide oligomers were mixtures of mono- and double-endcapped imide oligomers with polymerization degree (Pn) of 1-5 and number average molecular weights (Mn) of 2515-3851 g/mol. determined by GPC. Study on effect of chemical structures on the curing behaviors of two model compounds: PENA-m based on PENA and PEPA-m derived from 4-phenylethynylphthalic anhydride (PEPA) revealed that PENA-m showed the cure temperature of 50 °C lower than PEPA-m and the activity energy of thermal curing reaction for PENA-m was also lower than that of PEPA-m. The PENA-endcapped imide oligomers could be melt at temperatures of >250 °C with the minimum melt viscosity of 1.2-230 Pa s at 275-301 °C and the widen melt processing windows, along with 10-40 °C lower cure temperature than the PEPA-endcapped analogue.The PENA-endcapped imide oligomers could be thermally cured at 350 °C/1 h to afford the thermally cured polyimides with good combined thermal and mechanical properties including Tg of 344-397 °C (DMA), Td of 443-513 °C, tensile strength of as high as 54.7 MPa, flexural strength of as high as 126.1 MPa and modulus of as high as 2.3 GPa, respectively.  相似文献   

5.
The ε-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 °C and the maximal dissociation rate appeared at 226 °C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 °C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator. The weight-average molecular weight (Mw) increased greatly at higher initiator concentration and lower ratio of the monomer/initiator. And the molecule weight distribution (MWD) of the modified SEBS became wider than that of pure SEBS. It is obvious that shearing thinning behavior of grafted SEBS is more profound than pure SEBS.  相似文献   

6.
A series of hydroxy-containing phthalonitrile model compounds (HPNM) with 1:1 molar ratio of hydroxy group to phthalonitrile unit were successfully synthesized. The molecular structures were identified by FTIR and 1H NMR spectroscopic techniques. The model compounds can be thermally polymerized by duration at 225 °C for various times, even in the absence of curing additives. The thermal properties of the cured products were characterized by thermogravimetric analysis. Char yields (800 °C) of the final cured products were in the range 50-73%. The 5% and 10% weight loss ranged from 320 to 420 °C and 360-490 °C, respectively. Differential scanning calorimetry and FTIR were used to monitor the cure reaction. The results reveal that cure behaviors of the HPNM are closely correlated to their molecular structures, although each HPNM has a 1:1 molar ratio of hydroxy group to phthalonitrile unit. Therefore, the thermal properties of the final cured products depend mainly on the molecular structures of the corresponding HPNM, where differences in HPNM acidities should be considered and may contribute to their different cure behaviors.  相似文献   

7.
Cardanol-based epoxidized novolac vinyl ester resin (CNEVER) was synthesized by reacting cardanol-based epoxidized novolac (CNE) resin and methacrylic acid (MA) (CNE:MA molar ratio 1:0.9) in presence of triphenylphosphine as catalyst at 90 °C. The CNE resin was prepared by the reaction of cardanol-based novolac-type phenolic (CFN) resin and epichlorohydrin, in basic medium, at 120 °C. The CFN resin was synthesized by reacting cardanol (C) and formaldehyde (F) (C/F ratio = 1:0.7) with p-toluene sulphonic acid (PTSA) as catalyst (0.5 wt.%) at 120 °C for 7 h. The resin products were analyzed by Fourier-transform infra-red (FTIR) and nuclear magnetic resonance (NMR) spectroscopic analysis. The number-average molecular weight of the prepared CNEVER was found to be 859 gmol−1 as determined by gel permeation chromatographic (GPC) analysis. The resin was cured by using the mixture of resin, benzoyl peroxide, and styrene at 120 °C. The CNEVER resin was found to be cured in 60 min at 120 °C. Differential scanning calorimetric (DSC) technique was used to investigate the curing behaviour. Single step mass loss in dynamic thermogravimetric (TG) trace of CNEVER was observed. Thermal stability of the vinyl ester sample containing 40 wt.% styrene was the highest amongst all other prepared systems.  相似文献   

8.
Synthesis, characterization and solution properties of a new series of the PNIPAM-soybean oil and/or polypropylene glycol, PPG, conjugates (conjugates also referred to as co-networks) have been described. For this purpose free radical polymerization of NIPAM monomer was initiated by macroinitiators based on PSB and/or PPG in order to obtain PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM cross-linked graft copolymers. The autooxidation of soybean oil under air at room temperature rendered waxy soluble polymeric soybean oil peroxide associated with cross-linked parts. The soluble polymeric oil macro-peroxide isolated from the cross-linked part was used to initiate the free radical polymerization of NIPAM to give PSB-g-PNIPAM cross-linked copolymer. To obtain PPG-macromonomeric initiator, PPG-MIM, PPG-bis amino propyl ether with Mn 400 (or 2000) Dalton was reacted with 4,4′-azo bis cyanopentanoyl chloride and methacryloyl chloride, respectively. PPG-MIM also initiated the free radical polymerization of NIPAM at 80 °C to yield PPG-g-PNIPAM cross-linked thermoresponsive product. In order to obtain PSB-g-PPG-g-PNIPAM cross-linked triblock copolymer, NIPAM was polymerized by using the mixture of two macroinitiators, PSB and PPG-MIM. PSB contents in the graft copolymers were calculated via elemental analysis of nitrogen in graft copolymers. Thermal analysis, SEM, FTIR and 1H NMR techniques were used in the characterization of the products. The effect of polymeric soybean oil, PSB, and/or PPG on the thermal response rate of poly(N-isopropylacrylamide, PNIPAM, cross-linked-graft copolymers swollen in water has been investigated by means of swelling-deswelling and drug release behaviors against to temperature change. Lower critical solution temperatures (LCST) of the cross-linked PNIPAM conjugates (conjugates also referred to as co-networks) were determined from the curves of swelling degrees versus solution temperatures. The response temperature of the hydrophobically modified PNIPAM conjugates was reduced to 27 °C, 23 °C and 27 °C for PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM, respectively. We have found that the graft copolymers were not pH-responsive. In addition, higher pH ranges cause the hydrolysis of the PSB ester linkages, quickly and makes the cross-linked graft copolymers soluble.The fastest shrinking of the gels was observed by loosing water between 65% and 98% at 50 °C.Methyl orange (MO), was used as a model drug, loaded into cross-linked graft copolymers to examine and compare the effects of controlled release at lower and higher temperatures of lower critical solution temperature (LCST).  相似文献   

9.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

10.
Thermal diffusivity of thin film with low dielectric constant (k), what is called low-k dielectric thin film, 0.31-1.14 μm, including hydrogen-silsesquioxane (HSQ), methyl-silsesquioxane (MSQ), and poly(arylen ether) was examined by temperature wave analysis. The phase shift of temperature wave was observable up to 100 kHz. Thermal diffusivity of HSQ was 4.7 × 10−7 m2 s−1, on the other hand it was not higher than 1.1 × 10−7 m2 s−1 for MSQ or poly(arylen ether) at room temperature. Temperature dependence of thermal diffusivity/thermal conductivity of MSQ was obtained, thermal diffusivity decreased but thermal conductivity increased in a heating scan at 30-150 °C. It was shown that the thermal diffusivity of low-k thin film was correlated with the chemical and the physical structures, the latter was formed in the spin-coating and the curing process.  相似文献   

11.
This work is to explore a new route to synthesize functional polyesters bearing pendant hydroxyl groups. The approach is via biocatalyzed direct polycondensation. l-Malic acid, adipic acid and 1,8-octanediol were used as comonomers and lipase Novozym 435 as a biocatalyst. 1H NMR studies on the structure of the products indicated that Novozym 435 was strictly selective for esterification of l-malic acid carboxyl groups while leaving the hydroxyl groups unchanged. The influences of the monomer feeding ratio, reaction temperature, and reaction time on the molecular weight of the products were investigated. By varying l-malic acid feed ratio in the total monomers from 0 to 20 mol%, the molecular weight (MW) of the product changed from 9.5 kilo Dalton (kD) to 4.7 kD while reaction was held at 70 °C for 48 h. The maximum MW could reach 7.4 kD at 80 °C when varying temperature between 70 and 90 °C if l-malic acid is 20 mol% and reaction time is 48 h. At 75 °C the MW increased from 5.2 kD to 6.6 kD when reaction time was elongated from 48 h to 72 h. However, little change in MW was observed at 80 and 85 °C when the reaction time was above 48 h. Thermal property of the copolyesters was studied by differential scanning calorimetry (DSC). Increasing the l-malic acid content in copolyesters resulted in melting temperature depression.  相似文献   

12.
T. Wu  Y. Li  L. Song 《European Polymer Journal》2005,41(10):2216-2223
Thermal spectra of poly(trimethylene terephthalate) (PTT) were collected over a temperature range of 40-250 °C by FTIR micro-spectroscopy. Based on the changes of absorbance ratio corresponding to characteristic groups in low and high vibration energy states, the apparent enthalpy differences of vibration energy states transformation (ΔHv) in the melting process have been calculated by van’t Hoff equation at constant pressure. In comparison with the values of ΔHv, the status of participation for the vibration mode of various characteristic groups in PTT macromolecular chain segments was analyzed. It was found that the vibration modes related to the trimethylene glycol unit (O-CH2-CH2-CH2-O) of PTT behaved significant sensitivity and made prominent contribution in the melting process. By the summarization of corresponding data, it has shown that the melting course concerned amorphous phase began at as early as 218 °C, accompanied by the occurrence of crystallization to certain extent, and the ending point was at approximately 238 °C; whereas the melting course concerned crystalline phase began till 228 °C, with the top value of 238 °C, and ended at 242 °C. Besides, for the particular ordered arrangement of chain segments of aromatic polyesters in the melting course, FTIR analysis has provided a reasonable explanation on a molecular level.  相似文献   

13.
Novel 4-(4-trifluoromethyl)phenoxy N-phenyl-maleimide (FPMI) was synthesized. The free radical-initiated polymerization of FPMI was carried out in 1,4-dioxane solution using azobisisobutyronitrile as initiator. The monomer was investigated by FTIR, 1H NMR, 13C NMR and elemental analysis, while the polymer was investigated by FTIR, 1H NMR and 13C NMR. The effect of the monomer concentration, initiator concentration and temperature on the rate of polymerization (Rp) was studied. The activation energy of the polymerization was calculated (ΔE = 48.94 kJ/mol). The molecular weight of PFPMI and polydispersity index of the polymer were determined by gel permeation chromatography and were equal to 73,500, 16,700 and 2.27, respectively. The properties of PFPMI, including thermal behavior, thermal stability, the glass transition temperature (Tg = 236 °C), photo-stability, solubility and solution viscosity were studied.  相似文献   

14.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

15.
5-Vinyltetrazole (VT)-based polymer is mainly produced by ‘click chemistry’ from polyacrylonitrile due to the unavailability of 5-vinyltetrazole monomer, which usually produces copolymers of VT and acrylonitrile rather than pure poly(5-vinyltetrazole) (PVT). In present work, VT was synthesized from 5-(2-chloroethyl)tetrazole via dehydrochlorination. A series of PVT with different molecular weight were synthesized by normal free radical polymerization. The chemical structures of VT and PVT were characterized by 1H NMR and FTIR. PVT without any doped acid exhibits certain proton conductivity at higher temperature and anhydrous state. The proton conductivity of PVT decreases at least 2 orders of magnitude after methylation of tetrazole. PVT and PVT/H3PO4 composite membranes are thermally stable up to 200 °C. The glass transition temperature (Tg) of PVT/xH3PO4 composite membranes is shifted from 90 °C for x = 0.5 to 55 °C for x = 1. The temperature dependence of DC conductivity for pure PVT exhibits a simple Arrhenius behavior in the temperature range of 90–160 °C, while PVT/xH3PO4 composite membranes with higher H3PO4 concentration can be fitted by Vogel–Tamman–Fulcher (VTF) equation. PVT/1.0H3PO4 exhibits an anhydrous proton conductivity of 3.05 × 10−3 at 110 °C. The transmission of the PVT/xH3PO4 composite membrane is above 85% in the wavelength of visible light and changes little with acid contents. Thus, PVT/xH3PO4 composite membranes have potential applications not only in intermediate temperature fuel cells but also in solid electrochromic device.  相似文献   

16.
This study aims to determine the thermal quenching properties of pure bacterial cultures as a means of aiding the development of fluorescence measurement in natural waters. The bacterium Pseudomonas aeruginosa was isolated from the urban River Tame, Birmingham, UK, and planktonic bacteria were grown in sterile, sealed glass jars, in 100 mL of sterile growth media at 37 °C for a maximum of 24 h. Samples were taken at T = 6 h and at T = 24 h, and thermal fluorescence quenching measured at 5 °C increments between 10 and 45 °C over 30 min. 3D excitation-emission matrix (EEM) plots were generated from the fluorescence analyses over time. It was found that the fluorescence of a microbial culture was significantly thermally quenched, but the results were dependent on the fluorophore type and the stage of the bacterial growth curve. Quenching was sometimes non-linear, presumably due to fluorophore production exceeding thermal quenching during the growth phase of the bacteria. Thermal quenching has the potential to allow us to confirm the importance of microbes in fluorescence signals by the non-linear response to increasing temperature, and to utilise the thermal fluorescence quenching properties of molecules to differentiate between fluorophores present during bacterial growth.  相似文献   

17.
In this paper the synthesis and characterization of a new family reactive nematic oligomers based on 4-hydroxybenzoic acid (4-HBA) will be presented. We modified the backbone using para- and meta-substituted aromatic monomers such as terephthalic acid (TA), isophthalic acid (IA), hydroquinone (HQ), resorcinol (RS), 4,4′-bisphenol (BP) and 3-hydroxybenzoic acid (3-HBA). All oligomers, with a target Mn of 5000 and 9000 g mol−1, were end-capped with reactive phenylethynyl functionalities and synthesized using standard melt condensation techniques. Curing of the phenylethynyl reactive functionalities proceeds through chain extension and crosslinking, depending upon the temperature and time and can be carried out between 310 and 400 °C. Fully cured nematic thermosets could be obtained with glass-transition temperatures previously not accessible (Tg > 400 °C). The cured polymers exhibit excellent tensile properties, i.e. tensile strength (83 MPa) and elongation at break (9%). This approach allows us to prepare all-aromatic polymers with a combination of useful properties such as ease of processing, high Tg’s, and excellent mechanical properties.  相似文献   

18.
Thiol-ene reaction method was introduced to photopolymerize a new liquid formulation of commercial bismaleimide, as an alternative to traditional thermal cure method presently used for BMI in the industry. UV curing was shown to be an efficient method which promoted the reaction rate significantly and was able to achieve this at low temperatures (30-50 °C). The liquid formulation is stable and has low viscosity. The cure mechanism and cure kinetics were studied based on the data elucidated from the DPC and FTIR. The cured thin film can achieve very high thermal stability (∼400 °C) and BMI can retard the thermal degradation temperature and rate.  相似文献   

19.
Radical polymerization of N-vinylacetamide (NVA) in toluene at low temperatures was investigated. It was found that the addition of Lewis bases or alcohol compounds significantly influenced stereospecificity in NVA polymerization. For example, syndiotacticity increased from 25% to 34% by adding tri-n-butyl phosphate at −40 °C. Mono-alcohol compounds increased heterotacticity and heterotactic poly(NVA) with mr triad content of 58% was obtained at −40 °C in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol. Furthermore, isotactic poly(NVA) with mm triad = 49% was obtained at −60 °C in the presence of diethyl l-tartrate. The NMR analysis demonstrated that complex formation between NVA monomer and the added agents, through hydrogen-bonding interaction, played an important role to induce the stereospecificity.  相似文献   

20.
A novel thermosetting resin based on cyano functionalized benzoxazine (BZCN) has been synthesized from 2,6-bis(4-diaminobenzoxy)benzonitrile phenol and formaldehyde by solution reaction. The structure of the monomer is supported by FTIR, 1H NMR and 13C NMR spectra, which have exhibited that the reactive benzoxazine rings and cyano group exist in the molecular structure of BZCN. The curing reactions of BZCN are monitored by the disappearance of the nitrile peak and the tri-substituted benzene ring that is attached with oxazine ring peak at 2231 and 930 cm−1, respectively. The complete cured materials could achieve char yields up to 70% at 800 °C in nitrogen atmosphere, above 64% at 600 °C in air (20% oxygen) environments and the glass transition temperature up to 250 °C. The thermally activated curing polymerization reaction of BZCN follows multiple polymerization mechanisms via the ring-opening polymerization of oxazine rings and the triazine ring-formation of cyano groups, which contribute to the stability of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号