首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Soluble fluoro-polyimides have been synthesized by reacting of a fluorine-containing aromatic dianhydride, 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, with aromatic diamine to yield poly(amic acid)s which were then cyclized to yield polyimide by chemical imidization method. The polyimides have excellent solubility both in strong bipolar solvents, such as NMP and DMAc, and in common organic solvents, such as THF and dioxane, etc. The glass transition temperature of these polyimides were determined by DSC and ranged from 281 to 289 °C. Thermogravimetric analysis indicated that these polyimides have good thermal stability with initial thermal decomposition temperature of 520-526 °C. The polyimide asymmetric membranes were prepared by phase inversion method and the inner structure was observed by method of SEM. The pervaporation properties of the prepared polyimides asymmetric membranes for n-heptane/thiophene mixtures were investigated at 40-77 °C and the permeation flux and the sulfur enrichment factor of the polyimide membranes are in the range of 0.56-1.68 kg/m2 h and 3.12-2.24, respectively. The result demonstrated that the pervaporation method could be very effective method for desulfurization by polyimides asymmetric membranes with ultrathin skin.  相似文献   

2.
A new structurally asymmetric diamine monomer containing flexible ether linkages and bulky trifluoromethyl substituents, namely 1,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene, was prepared from 1,3-dihydroxynaphthalene and 2-chloro-5-nitrobenzotrifluoride. New series of fluorinated polyimides were synthesized from the diamine with six commercially available aromatic tetracarboxylic dianhydrides using a conventional two-stage process with thermal or chemical imidization. The resulting polyimides were highly soluble in a variety of organic solvents and could afford transparent and tough films via solution casting. These polyimides exhibited moderately high glass-transition temperatures (by DSC) of 236-268 °C and softening temperatures (by thermomechanical analysis) of 231-250 °C, and they did not show significant decomposition before 500 °C under either nitrogen or air atmosphere. Also, they revealed low moisture absorptions (0.32-0.78%), low dielectric constants (2.81-3.24 at 10 kHz), and high optical transparency (ultraviolet-visible absorption cutoff wavelengths of 377-426 nm).  相似文献   

3.
Two kinds of aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 4-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone, were successfully synthesized with two different synthetic routes. Then, they were polymerized with 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride to form a series of fluorinated polyimides via a conventional two-step thermal or chemical imidization method. The resulting polyimides were characterized by measuring their solubility, viscosity, mechanical properties, IR-FT, and thermal analysis. The results showed that the polyimides had inherent viscosities of 0.48-0.68 dl/g and were easily dissolved in bipolarity solvents and common, low-boiling point solvents. Meanwhile, the resulting strong and flexible polyimide films exhibited excellent thermal stability, e.g., decomposition temperatures (at 10% weight loss) are above 575 °C and glass-transition temperatures in the range of 218-242 °C. The polymer films also showed outstanding mechanical properties, such as tensile strengths of 86.5-132.8 MPa, elongations at break of 8-14%, and initial moduli of 1.32-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

4.
One of fluorinated polyimides was synthesized from 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3′-dimethyl-4,4′-diaminodiphenylmethane (DMMDA) by two-steps method, which had good solubility and hydrophilicity. 6FDA-DMMDA polyimide was dissolved in chloroform (CHCl3) and cast on a glass substrate in a humid atmosphere. It was found that 6FDA-DMMDA/CHCl3 solution was easy to form ordered porous structure at high concentration, and the reason was discussed in detail. In addition, the influences of solution concentration, the atmosphere humidity, were also tested.  相似文献   

5.
A new dicarboxylic acid, 2,4-bis(N-trimellitoyl)triphenylamine, bearing two preformed imide rings was synthesized from the condensation of 2,4-diaminotriphenylamine and trimellitic anhydride at 1:2 molar ratio. A series of poly(amide-imide)s (PAIs) with inherent viscosities of 0.38-0.66 dl/g were prepared by triphenyl phosphite-activated polycondensation from the diimide-dicarboxylic acid with various aromatic diamines. All the resulting PAIs were readily soluble in a variety of organic solvents and formed strong and tough films via solution casting. These PAIs have useful levels of thermal stability associated with moderately high glass-transition temperatures (259-314 °C) and 10% weight loss temperatures in excess of 530 °C in nitrogen or in air.  相似文献   

6.
A fluorinated tetracarboxylic dianhydride (amide-type TA-TFMB) was prepared from trimellitic anhydride chloride and 2,2′-bis(trifluoromethyl)benzidine (TFMB). A chemically imidized polyimide (PI) derived from TA-TFMB and TFMB was rather soluble in various solvents. Solution casting of this PI (TA-TFMB/TFMB) led to a flexible, non-turbid, and seemingly almost colorless PI film with a high Tg of 328 °C and a considerably low coefficient of thermal expansion (CTE) of 9.9 ppm K−1 which results from significant in-plane chain orientation induced during solution casting. The self-orientation mechanism is discussed. The properties of TA-TFMB/TFMB were compared with those of some relevant systems. The results suggest that an electron-withdrawing effect of the 2,2′-CF3 substituents of TA-TFMB and a twisted conformation of the central biphenyl moiety greatly contribute to the suppressed coloration of the TA-TFMB/TFMB film. The use of a TA-TFMB counterpart (ester-type TA-TFBP) was effective for further enhancing the transparency owing to reduced charge-transfer interaction. However, the thermal properties of TA-TFBP/TFMB were not always satisfactory. Copolymerization using 2,3,6,7-naphthalenetetracarboxylic dianhydride led to a PI film with an increased Tg of 277 °C and a very low CTE of 12.6 ppm K−1 without significant decreases in the transparency and the solubility. Thus, this work proposes promising candidates as novel heat-resistant plastic substrate materials in display devices.  相似文献   

7.
We have synthesized a series of new diamines containing bis(ethynylaniline) linkages by bromine substitution reaction of ethynylaniline with 4,4′-bis(4-bromophthalimido)diphenylether (PODA) or 1,4-bis(4-bromophthalimido)benzene (PPDA). The intermediates were separated at each step, purified and characterized by the spectroscopic techniques. The model compound having imide and triple bond moiety was synthesized in order to elucidate the nature of the products formed from the ethynyl curing by FT-IR spectroscopy. The polymerization reaction of ethynylaniline diamines with various dianhydrides gave fully imidized and soluble aromatic polyimides. The thermally cured polyimide samples displayed good solvent resistance. The thermal crosslinking of triple bond moieties in the main chain was carried out by heating in the temperature range from 150 to 400 °C. The glass transition temperature of polyimide completely disappeared after heat treatment at 400 °C for 5 min. The polyimides derived from diamines containing bis(ethynylaniline) groups were thermally stable after heat treatment.  相似文献   

8.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

9.
Polyimide-polydimethylsiloxane copolymers containing nitrile groups   总被引:1,自引:0,他引:1  
A novel series of nitrile-containing polyimide-polydimethylsiloxane copolymers was prepared by polycondensation reaction of 4,4′-oxydiphthalic anhydride with a mixture of an aromatic diamine, namely 2,6-bis(3-aminophenoxy)benzonitrile, and bis(aminopropyl)oligodimethylsiloxane of controlled molecular weight, in different ratios. The polymers were easily soluble in polar organic solvents, such as N-methylpyrrolidone, N,N-dimethylformamide as well as in less polar solvents such as chloroform, and can be cast from solution into thin flexible films. The inherent viscosity was in the range of 0.43-0.55 dL/g. The polymers showed good thermal stability, the decomposition temperature being above 430 °C. They exhibited a glass transition temperature in the range of 149-219 °C, with reasonable interval between glass transition temperature and decomposition temperature. The surface morphology was investigated by scanning electron microscopy. The water dynamic contact angles were measured by tensiometric method. The free surface energy was evaluated based on Owens and Wendt equation. A composite film based on a polyimide-polydimethylsiloxane copolymer and pyrite ash powder has been prepared and its nanoactuation has been investigated.  相似文献   

10.
A new aromatic unsymmetrical diamine monomer, 1,4-(2′,4″-diaminodiphenoxy)benzene (OAPB), was successfully synthesized in three steps using hydroquinone as starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and pyromellitic dianhydride (PMDA) via the conventional two-step thermal or chemical imidization method to produce a series of the unsymmetrical aromatic polyimides. The polyimides were characterized by solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X-ray diffraction studies, and thermogravimetric analysis. The polyimides obtained had inherent viscosities ranged of 0.38-0.58 dL/g, and were easily dissolved in common organic solvents. The resulting strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 505 °C and the glass transition temperature in the range of 230-299 °C. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 41.4-108.5 MPa, elongation at breaks of 5-9% and initial moduli of 1.15-1.68 GPa.  相似文献   

11.
A novel fluorinated aromatic diamine 1,1′-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane (6FDAM) was synthesized in a simple procedure, which was then employed to prepare a series of fluorinated polyimides with commercial aromatic dianhydrides, such as pyromellitic dianhydride (PMDA), 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane (6FDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4′-oxydiphthalic anhydride (ODPA). The polyimides exhibited good solubility in strong dipolar solvents such as NMP, DMAc, DMF and m-cresol as well as some of low boiling point organic solvents of THF and CHCl3, etc. Experimental results indicated the polyimides possessed low moisture adsorptions of 0.42-0.95%, low dielectric constant of 2.71-2.95 at 1 MHz, high dielectric strength of 92.0-122.6 kV/mm and good optical transparency with cutoff wavelengths of UV-vis at 330-375 nm. The polyimides also exhibited good mechanical properties as well as excellent thermal and thermo-oxidative stability. The fluorinated polyimides possessed better solubility, lower dielectric constant and water adsorption as well as higher optical transparency than the representative non-fluorinated polyimide derived from PMDA and 4,4′-oxydianiline (ODA).  相似文献   

12.
A new kind of pyridine-bridged aromatic dianhydride monomer, 4-phenyl-2,6-bis[4-(3,4-dicarboxyphenoxy)phenyl]-pyridine dianhydride (PPDA), was successfully synthesized by modified Chichibabin reaction of benzaldehyde and substituted acetophenone, 4-(3,4-dicyanophenoxy)-acetophenone (DCAP), followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. The pyridine-bridged aromatic dianhydride was employed to synthesized a series of new pyridine-containing polyimides by polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) via the conventional two-step method, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.49-0.63 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide (DMAc), NMP, and m-cresol, etc. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures (Tg) of 223-256 °C, the temperature at 5% weight loss of 523-569 °C, and the residue at 700 °C of 52.1-62.7% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 70.7-97.6 MPa and elongations at breakage of 7.9-9.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

13.
A series of organo-soluble polyimides were prepared from a novel fluorinated diamine monomer, 4-phenyl-2,6-bis[4-(4′-amino-2′-trifluoromethylphenoxy)phenyl]pyridine and various commercial aromatic dianhydrides. These polyimides had good solubility in common organic solvents. The obtained strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 561 °C and the glass transition temperature in the range of 258-312 °C. Moreover, the polymer films showed good electrical insulating property, low dielectric constant and low water uptake due to the introduction of fluorinated substitutes in the polymer backbone. The remarkable combined features ensure these polymers to be ideal candidate materials for advanced microelectronic industry and other related applications.  相似文献   

14.
Two series of aromatic poly(1,3,4-oxadiazole-amide)s have been synthesized by low-temperature solution polycondensation reaction of equimolar amounts of aromatic diamines containing preformed oxadiazole rings with diacid chlorides having silicon or hexafluoroisopropylidene groups. These polymers are soluble in polar aprotic solvents and show high thermal stability with decomposition temperature being above 400 °C and glass transition temperature in the range of 250-350 °C. The polyoxadiazole-amides have weight- and number-average molecular weights in the range of 207 000-330 000 and 77 000-131 000, respectively. Conformational parameters of these polymers were calculated by Monte Carlo method with allowance for hindered rotation and discussed in relation with thermal properties. Polymer solutions in NMP were processed into thin free-standing films that showed good mechanical properties with tensile strength in the range of 50-100 MPa, tensile modulus in the range of 2.25-3.56 GPa and elongation to break in the range of 1.65-8.58%.  相似文献   

15.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

16.
Three novel terpolymers, i.e. P-1, P-2 and P-3, were prepared from the terpolymerization of butyl p-styrenesulfonate (BSS), methyl methacrylate (MMA) and methacrylic acid (MAA). Thin films composed of the prepared terpolymers, 2,2-bis(4-(2-(vinyloxy)ethoxy)phenyl)propane (BVPP) and an IR dye (in case of laser scanning) were made onto an aluminum substrate. Crosslinking and de-crosslinking reactions would readily take place when the films were treated at 80 °C and 220 °C for a short period of time, respectively. Along with the chemical structural changes during thermal treatment, great solubility changes could be achieved. It was found that the crosslinked polymer matrix was more resistant to aqueous solution and insoluble in neutral water, whereas the de-crosslinked one such as P-1 matrix could become soluble in neutral water. Based on these properties, a positive-working and neutral water-developable imaging material was proposed and preliminary studies on the imaging property were conducted.  相似文献   

17.
A new kind of pyridine-containing aromatic diamine monomer, 4-phenyl-2,6-bis[3-(4′-amino-2′-trifluoromethyl-phenoxy) phenyl] pyridine (m-PAFP), was successfully synthesized by a modified Chichibabin reaction of 3-(4′-nitro-2′-trifluoro-methyl-phenoxy)-acetophenone with benzaldehyde, followed by a catalytic reduction. A series of fluorinated pyridine-bridged aromatic poly(ether-imide)s were prepared from the resulting diamine monomer with various aromatic dianhydrides via a conventional two-step thermal or chemical imidization method. The inherent viscosities values of these polyimides were in the range of 0.56-1.02 dL/g, and they could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides displayed higher solubility in polar solvents such as NMP, DMSO and m-cresol. The polyimides had good thermal stability, with the glass transition temperatures (Tg) of 187-211 °C, the temperatures at 5% weight loss of 511-532 °C, and the residue at 800 °C in air was higher than 50%. These films also had dielectric constants of 2.64-2.74 at 10 MHz and low water uptake 0.53-0.66%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous. Moreover, the polymer films of these novel polyimides showed outstanding mechanical properties with the tensile strengths of 90.1-96.6 MPa, elongations at breakage of 8.9-10.7% and tensile modulus of 1.65-1.98 GPa.  相似文献   

18.
A dicarboxylic acid bearing two preformed imide rings, namely 4,4′-bis(trimellitimido)-4″-methoxytriphenylamine (3), was prepared by the condensation of 4,4′-diamino-4″-methoxytriphenylamine (2) and two molar equivalents of trimellitic anhydride (TMA). A new family of aromatic poly(amide-imide)s (PAIs) containing the electroactive triphenylamine (TPA) unit were prepared by the triphenyl phosphite activated polycondensation of the diimide-diacid 3 with various aromatic diamines. All the polymers were readily soluble in many organic solvents and could be solution-cast into tough and flexible polymer films. They displayed high glass-transition temperatures (269-313 °C) and good thermal stability, with 10% weight-loss temperatures in excess of 521 °C in nitrogen and char yields at 800 °C in nitrogen higher than 68%. Cyclic voltammograms of the PAI films cast onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couple at 0.91-0.93 V vs. Ag/AgCl in acetonitrile solution. The polymer films revealed a good electrochemical and electrochromic stability, with a color change from colorless neutral form to blue oxidized form at applied potentials ranging from 0.0 to 1.2 V. The PAIs containing the TPA unit in both imide and amide segments showed multicolor electrochromism: pale yellow in the neutral state, green in the semi-oxidized state, and deep blue in the fully oxidized state.  相似文献   

19.
New highly fluorinated aromatic polyimides based on hexafluoro-2,4-toluenediamine and commercially available dianhydrides (6FDA and ODPA) were synthesized by one-pot high temperature polycondensation in benzoic acid melt. Owing to the CF3 group and fluorine atoms in the meta-linked phenylenediamine fragment, these polyimides combine good solubility in organic solvents including such a low boiling point solvent as chloroform with high glass transition temperatures (330-345 °C), thermal and thermooxidative stability (T5 is >500 °C). The highly fluorinated polyimide films (hydrogen content is ≤1%) exhibit good dielectric properties and low water absorption as well as excellent optical transparency in the UV-vis region (cut-off wavelength is 311 nm for 6FDA-based and 357 nm for ODPA-based polyimides), which is very important for optoelectronic materials.  相似文献   

20.
New poly(1,3,4-oxadiazole-imide)s containing dimethylsilane units have been prepared by solution polycondensation reaction of an aromatic dianhydride incorporating dimethylsilane group, namely bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, with different aromatic diamines having preformed 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2,5-bis[p-(3-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-fluorophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole, and 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. The polymers were easily soluble in polar organic solvents, such as N-methylpyrrolidinone, N,N-dimethylformamide, and pyridine, as well as in less polar organic solvents, such as tetrahydrofuran and chloroform. Very thin coatings deposited on silicon wafers exhibited smooth, pinhole-free surface in atomic force microscopy investigations. The polymers showed high thermal stability with decomposition temperature being above 415 °C.They exhibited a glass transition in the temperature range of 202-282 °C, with reasonable interval between glass transition and decomposition temperature. Solutions of the polymers in N,N-dimethylformamide exhibited fluorescence, having maximum emission wavelength in the range of 353-428 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号