首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The molecular dynamics of poly(vinyl acetate), PVAc, and poly(hydroxy butyrate), PHB, as an amorphous/crystalline polymer blend has been investigated using broadband dielectric spectroscopy over wide ranges of frequency (10−2 to 105 Hz), temperature, and blend composition. Two dielectric relaxation processes were detected for pure PHB at high and low frequency ranges at a given constant temperature above the Tg. These two relaxation peaks are related to the α and α′ of the amorphous and rigid amorphous regions in the sample, respectively. The α′-relaxation process was found to be temperature and composition dependent and related to the constrained amorphous region located between adjacent lamellae inside the lamellar stacks. In addition, the α′-relaxation process behaves as a typical glass relaxation process, i.e., originated from the micro-Brownian cooperative reorientation of highly constraints polymeric segments. The α-relaxation process is related to the amorphous regions located between the lamellar crystals stacks. In the PHB/PVAc blends, only one α-relaxation process has been observed for all measured blends located in the temperature ranges between the Tg’s of the pure components. This last finding suggested that the relaxation processes of the two components are coupled together due to the small difference in the Tg’s (ΔTg = 35 °C) and the favorable thermodynamics interaction between the two polymer components and consequently less dynamic heterogeneity in the blends. The Tg’s of the blends measured by DSC were followed a linear behavior with composition indicating that the two components are miscible over the entire range of composition. The α′-relaxation process was also observed in the blends of rich PHB content up to 30 wt% PHB. The molecular dynamics of α and α′-relaxation processes were found to be greatly influenced by blending, i.e., the dielectric strength, the peak broadness, and the dielectric loss peak maximum were found to be composition dependent. The dielectric measurements also confirmed the slowing down of the crystallization process of PHB in the blends.  相似文献   

2.
A series of alternating maleimide (MI) copolymers with fluorinated side chains have been investigated using broadband dielectric spectroscopy. The side chains consist of fluoroalkane (–C x F2x+1, x=1, 7, 9) end groups connected to the main chain via methylene spacers. The experiments were carried out in a frequency range of 0.1 Hz to 10 MHz and at temperatures between 120 K and 500 K. The fluorinated MI copolymers show a fast sub-T g (β) relaxation characterized by an Arrhenius-type temperature dependence with activation energy in the range of 30–37 kJ/mol. Two more processes (α and δ-like) are observed, corresponding to independent relaxations of the main chain and the fluoroalkane domains respectively. For shorter side chains, the δ-like process is not observed but instead another relaxation process, α S , occurs at temperatures higher than either the α and δ-like processes. When compared with unfluorinated MI copolymers, the fluorinated MI copolymers show the δ-like process and a slower β-relaxation unlike their unfluorinated counterparts. A model to explain the molecular origin of the four processes is proposed, supplemented by differential scanning calorimetry and published WAXS/SAXS data.  相似文献   

3.
Crystallization kinetics of poly(hydroxy butyrate), PHB, and its blends with poly(vinyl acetate), PVAc, have been thoroughly investigated using broadband dielectric technique over a wide range of frequencies (10−2-105 Hz) as functions of crystallization temperature and blend composition. The dielectric strength of the amorphous segments, Δε, which is directly proportional to the volume fraction of the mobile amorphous phase in the blend decreases exponentially with increasing the crystallization time. However, on the other hand, the dielectric strength of the rigid amorphous segments, Δεα′, which is related to the percentage of crystallinity in the blend increases dramatically with increasing crystallization time. A great variation in the dynamical constraints of relaxation segments with increasing crystallization time has been observed as a result of different environments, which would lead to a variation in the consistency of the cooperative regions. The value of the dielectric constant, ε′, decreases dramatically with increasing crystallization time, after that it reaches an equilibrium value at the end of the crystallization process. This dramatic decrease in the value of ε′ as a result of crystallization at a given crystallization temperature, was taken as an accurate evaluation for the amount of the amorphous phase that has undergone crystallization considering the theoretical approach of Avrami. The Avrami exponent, n, was found to be crystallization temperature, Tc, independent (n ∼ 3) indicating a three-dimensional crystal growth for pure PHB. The crystallization rate constant, k, increases greatly with increasing Tc due to the high crystallization rate. In the blend the value of n was found to be concentration dependent (n ∼ 1.8-3.2). The different values of n indicate that the shapes of the growing crystals are affected by blend concentration. For n ∼ 1.8, the crystals can either grow sporadically as rods or instantaneously as disks, while for n ∼ 3 a three-dimensional crystal growth takes place.  相似文献   

4.
5.
Polybutadienes modified by a small number of 4-phenyl-1,2,4-triazoline-3,5-dione form thermoreversible networks via hydrogen bonding between the polar stickers. The molecular dynamics of systems with different contents of polar stickers are investigated by broadband dielectric spectroscopy in the frequency regime of 10–1–109 Hz. Unmodified polybutadiene shows two relaxation processes, the -relaxation which is correlated to the dynamic glass transition of the polybutadiene, and a -relaxation corresponding to a local relaxation of polybutadiene segments. In the polar functionalized systems, besides these two relaxations, an additional relaxation process (called *) is observed, which occurs at lower frequencies than the -process. While the -relaxation remains unaffected by the functionalization the cooperativity of the -relaxation increases by the formation of reversible junctions and slows down considerably. This indicates a decreased mobility of the polymer matrix. At the same time the dipole moment of relaxing units contributing to the -relaxation is increased by free phenyl urazole units. The * is assigned to the local complex dynamics resulting from the dissociation and formation of dimeric contacts. Hence, for this dynamic process, the absolute value of the dipole moment fluctuates with time and causes a dielectric absorption. This interpretation is in agreement with the hindered reptation model of Leibler, Rubinstein and Colby and simultaneous measurements of infrared dichroism and birefringence.  相似文献   

6.
Dielectric relaxation spectroscopy was used to investigate the effect of the inorganic phase on the polymeric relaxation dynamics in PMMA/silica hybrids synthesized in situ via sol-gel processes. It was found that the large-scale molecular motions of PMMA were influenced by the addition of silica, inducing longer mean relaxation times, more heterogeneous relaxing environments and the higher activation energy. Explanations based on hydrogen-bond interactions between two phases and a fraction of entrapped chain segments in silica networks were proposed to understand the influence of the silica.  相似文献   

7.
Molecular dynamics of diglycidyl ether of bisphenol A (DGEBA) epoxy resin modified with an epoxidized poly(styrene-b-butadiene) (SepB) linear block copolymer has been monitored during cure and microphase separation process by dielectric relaxation spectroscopy (DRS) for wide frequency and temperature ranges. Different primary and secondary relaxation processes have been analyzed for neat components and ternary mixture. Relaxational behaviour has been modelled with Havriliak-Negami, Vogel-Fulcher-Tammann and Arrhenius equations and fitting parameters and their evolution have been obtained. The retention of the epoxidized poly(butadiene) (PepB) block in the epoxy-rich phase during all the polymerization process, previously detected by our group with atomic force and transmission electron microscopies, has been confirmed by dielectric relaxation spectroscopy. The evolution of molecular dynamics during the polymerization process of the epoxy resin in the ternary system indicates a change in the trend of the main relaxation at times that agree with phase separation detected by rheology.  相似文献   

8.
Macromolecular dynamics of sulfonated poly(styrene-b-ethylene-ran-butylene-b-styrene) (sSEBS) triblock copolymers were investigated using broadband dielectric spectroscopy (BDS). Two main relaxations corresponding to the glass transitions in the EB and S block phases were identified and their temperature dependences were VFT-like. Tg for the S block phase shifted to higher temperature due to restrictions on chain mobility caused by hydrogen bonded SO3H groups. While the EB block phase Tg appeared to remain constant with degree of sulfonation in DMA experiments, it shifted somewhat upward in BDS spectra. A low temperature relaxation beneath the glass transition of the EB block phase was attributed to short range chain motions. The Kramers–Krönig integral transformation was used to calculate conductivity-free loss permittivity spectra from real permittivity spectra to enhance true relaxation peaks. A loss permittivity peak tentatively assigned to relaxation of internal S-EB interfacial polarization was seen at temperatures above the S block phase glass transition, and the temperature dependence of this relaxation was VFT-like. The fragilities of the EB and S block domains in sulfonated SEBS decreased after sulfonation. The temperature dependence of the dc conduction contribution to sSEBS loss spectra also followed VFT-like behavior and S block segmental relaxation time correlated well with conductivity according to the fractional Debye–Stokes–Einstein equation.  相似文献   

9.
The nonlinear dielectric response due to the application of a strong dc bias electric field superimposed on a weak ac electric field is considered in the context of the anomalous diffusion (subdiffusion). A perturbation procedure is used to derive analytical expressions for the first three harmonic components of the electric polarization of an assembly of both polar and anisotropically polarizable symmetric-top molecules. To accomplish that, an infinite hierarchy of multiterm (21) differential-recurrence equations of noninteger order for the moments is established and solved for the stationary regime. The results so obtained are illustrated in the form of Argand diagrams and three-dimensional relaxation spectra for the complex nonlinear dielectric increment extracted from the first harmonic component of the electric susceptibility. These plots show the role and importance played by the fractional exponent and the parameter P measuring the influence of the dipole moment over the permanent one.  相似文献   

10.
The curing of a thermosetting powder coating was studied by means of differential scanning calorimetry (DSC). The isothermal cure was simulated by non-isothermal experiments. The results of the simulation were compared with experimental isothermal data. From non-isothermal isoconversional procedures (free model), it was concluded that these permit simulation of the isothermal cure but do not enable us to determine the complete kinetic triplet (A preexponential factor, E activation energy, f(a) and/or g(a) function of conversion). Non-isothermal procedures based on a single heating rate or on master curves present difficulties for determination of all the kinetic parameters, due to the compensation effect between preexponential factor and activation energy. The kinetic triplet can be determined by a combination of various non-isothermal methods or by using experimental isothermal data in addition to non-isothermal data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Various well dried solid celluloses, such as nativecelluloses from different sources, different pulps and regenerated cellulosefibers were compared by dielectric relaxation spectroscopy (DRS) in the lowfrequency (10 mHz to 5 MHz) and low temperature(–130 to 20 °C) range. No significant differences werefound in the polymeric dynamics. In addition, the influence of the watercontenton the -relaxation and the wet relaxation wasinvestigated for morphologically very different celluloses such as cottonlinters, highly amorphous bead cellulose and lyocell fibers. The lyocell fiberswere investigated in the unmodified form and after modification by a treatmentwith alkali, after mild bleaching and after chemical crosslinking. It was foundthat the water content influences the dielectric dynamics and the intensityparameters differently for these different materials. NaOH-activation usingdifferent lye concentrations also influenced the dielectric dynamics. Finally,opportunities and limitations of DRS as a diagnostic tool are discussed.  相似文献   

12.
<正>The phase transition of Silwet L-77(a kind of siloxane surfactant) dilute aqueous solution with temperature was investigated by dielectric relaxation spectroscopy.In the initial heating process,a dielectric relaxation was found at about 10~6 Hz,which was considered as the interface polarization ascribed to the interface between water and liquid phases(W and L_1).With the temperature increasing further,a new dielectric relaxation was observed at about 10~4 Hz,which was assigned to the appearance of liquid crystal phase(L_α).According to the dielectric parameters fitted by Cole-Cole equation,the coexistence temperature of W,L_1 and L_αwas determined at about 37.0℃.  相似文献   

13.
Simultaneous dielectric and near infrared measurements have been performed in “real-time” to follow polymerisation reactions on blends of a diglycidyl ether of bisphenol-A epoxy resin with 4,4-diaminodiphenylmethane hardener and different amounts of poly(methylmethacrylate) as modifier. The effect of the modifier amount on the polymerisation reactions has been studied, as well as that of the curing temperature. Epoxy and amine conversions have been followed by near infrared spectroscopy (NIR), while changes in molecular mobility in the reaction mixture have been analysed by dielectric relaxation spectroscopy (DRS). Evolutions of ionic conductivity and α-relaxation have been analysed and vitrification times have been obtained. The relaxational behaviour has been analysed through curing in the frequency domain, being the change of the main relaxation indicative of the cure reaction advancement. DRS data are also presented as complex impedance Z(ω). Vitrification times, obtained by dielectrometry have been compared with those obtained by rheological measurements and gelation times obtained by NIR have been compared with those obtained by solvent extraction.  相似文献   

14.
This paper studies the thermal stability of an epoxy powder coating. The study was carried out in a thermobalance at various heating rates and in different atmospheres: nitrogen, air and oxygen. Degradation in air and oxygen leads to a kinetic process which is clearly different from degradation in an inert atmosphere. To characterise each process, the DTG signal peaks were separated and kinetic parameters were associated to each by means of the isoconversional method and other standard methods. The results obtained were compared with the experimental results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Dielectric relaxation spectroscopy technique was employed to study the Maxwell–Wagner–Sillars (MWS) polarization and dc conductivity in polyamide 610. The experimental dielectric data were analyzed within the formalisms of complex permittivity and electric modulus. The results were discussed in terms of ac conductivity, MWS polarization, electrode polarization and dc conductivity. In the frequency spectra of polyamide 610, charge carriers movement resulted in high values of the dielectric permittivity. The results revealed that the motion of the polymer chains governs the charge carrier transport. Two different mechanisms for charge carrier movement showed a transition temperature located between 110 and 120 °C. The change of charge carrier movement mechanisms was resulted from the onset of the polymeric chains in the interphase between amorphous and crystalline phases.  相似文献   

16.
Protein dynamics occurring on a wide range of timescales play a crucial role in governing protein function. Particularly, motions between the globular rotational correlation time ( ) and 40 μs (supra‐ window), strongly influence molecular recognition. This supra‐ window was previously hidden, owing to a lack of experimental methods. Recently, we have developed a high‐power relaxation dispersion (RD) experiment for measuring kinetics as fast as 4 μs. For the first time, this method, performed under super‐cooled conditions, enabled us to detect a global motion in the first β‐turn of the third IgG‐binding domain of protein G (GB3), which was extrapolated to 371±115 ns at 310 K. Furthermore, the same residues show the plasticity in the model‐free residual dipolar coupling (RDC) order parameters and in an ensemble encoding the supra‐ dynamics. This β‐turn is involved in antibody binding, exhibiting the potential link of the observed supra‐ motion with molecular recognition.  相似文献   

17.
The molecular dynamics of carboxylated acrylonitrile-butadiene rubber - silica hybrid materials was investigated. Silica hybrids were formed in situ rubber matrix using varied amounts of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMS), serving also as a cross-linker. Filler-filler and filler-rubber interactions were present, due to the specific nature of these materials. It was found that the amounts of added aminosilane determined the cross-linking density of obtained materials and was the highest with 20 phr DAMS used. The cross-links had ionic nature. Dielectric relaxation spectroscopy (DRS) revealed β, α and α′ relaxation processes. The β relaxation, correlated with the mobility of polymer side groups, was influenced by the weak interaction between both acrylonitrile and carboxylic groups of the rubber and silanol groups of silica. The activation energy for that relaxation was similar for all materials (∼32 kJ mol−1). Both DRS and dynamical mechanical analysis (DMA) demonstrated that the amount of in situ formed silica filler did not significantly influence either the temperature of the α relaxation (correlated with glass transition) or its activation energy. Therefore, that relaxation was caused by free polymer chains, not attached to the silica particles. Similar values of glass transition temperature (Tg) for all hybrids were confirmed by DSC. It appeared that the amplitude of tangent delta (DMA) within Tg was dependent on silica amount. Detected at higher temperature α′ relaxation resulted from the presence of domains, where polymer chains were affected by silica network, geometrical restrictions and morphology of the silica-rich domains.  相似文献   

18.
Photochromic silica based organic-inorganic hybrid materials containing covalently linked cyanoazobenzene chromophores were investigated by optical and dielectric spectroscopy. These materials, obtained via sol-gel process, were deposited onto glass substrates by spin coating technique to achieve thin transparent films. To investigate photoinduced alignment, the UV-Vis absorption spectra of the sol-gel films were recorded under illumination with linearly polarized blue light. Dielectric relaxation spectroscopy revealed a variety of relaxation processes: the α-process related to the dynamic glass transition temperature located around 150°C, and an Arrhenius-type β-relaxation (activation energy 58–60 kJ/mol) that was assigned to orientational fluctuations involving the azobenzene group. The correspondence between dielectric and photochemical behavior was discussed.  相似文献   

19.
Dielectric spectroscopy (DS) is one of the most powerful and prevailing structural analysis techniques for dielectric materials. Engine lubricating oil is a typical dielectric material. But DS for qualitative or quantitative analysis of engine lubricating oil has received little attention. In this paper, DS in association with support vector machines (SVM) classification technique was employed to classify 20 samples of engine lubricating oils from Mobil, Shell and Esso by Society of Automotive Engineers (SAE) viscosity grade and source (manufacturer). Both distinguishing the multi-grade from the single-grade according to SAE grade and classification according to manufacturer were done perfectly, which proved that DS can provide useful compositional and structural information on engine lubricating oil. The work in this article has laid the foundation for further quantitative determination of properties of engine lubricating oil and will be a good start to application of DS to petroleum analysis and testing.  相似文献   

20.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号