共查询到20条相似文献,搜索用时 15 毫秒
1.
Defeng Wu 《Polymer Degradation and Stability》2006,91(12):3149-3155
Polylactide/clay nanocomposites (PLACNs) were prepared by melt intercalation. The intercalated structure of PLACNs was investigated using XRD and TEM. Both the linear and nonlinear rheological properties of PLACNs were measured by parallel plate rheometer. The results reveal that percolation threshold of the PLACNs is about 4 wt%, and the network structure is very sensitive to both the quiescent and the large amplitude oscillatory shear (LAOS) deformation. The stress overshoots in the reverse flow experiments were strongly dependent on the rest time and shear rate but shows a strain-scaling response to the startup of steady shear flow, indicating that the formation of the long-range structure in PLACNs may be the major driving force for the reorganization of the clay network. The thermal behavior of PLACNs was also characterized. However, the results show that with the addition of clay, the thermal stability of PLACNs decreases in contrast to that of pure PLA. 相似文献
2.
Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites 总被引:2,自引:0,他引:2
In order to further improve thermal stability of the phenolic resins, we combined boron and clay with phenolic resins to prepare nanocomposites (BH-B, BP-B, and BE-B series). Boron-containing phenolic resin/clay (montmorillonite) nanocomposites were prepared using in situ polymerization of resol-type phenolic resins. Montmorillonite (MMT) was modified by benzyldimethylhexadecylammonium chloride (BH), benzyldimethyphenylammonium chloride (BP), and benzyltriethylammonium chloride (BE). X-ray diffraction measurements and transmission electron microscope (TEM) observations showed that clay platelets were partially exfoliated after complete curing of the phenolic resins. Thermogravimetric analysis showed that thermal decomposition temperatures (Td) and residual weight at 790 °C of cured boron-containing nanocomposites were much higher than the corresponding nanocomposites without boron. For example, the rise in decomposition temperature of BE-B10% is about 42 °C (from 520 to 566 °C), whereas the increase in char yields is 6.4% (from 66.2% to 72.6%). However, the boron-containing composites were more prone to absorb moisture (ca. 9-14%) than boron-free ones (ca. 3-4%), which was attributed to unreacted or partially reacted boric acid during preparation process. 相似文献
3.
Xinfeng Xu 《Polymer Degradation and Stability》2009,94(1):113-123
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites. 相似文献
4.
Ethylene/propylene-random-copolymer(PPR)/clay nanocomposites were prepared by two-stage melt blending. Four types of compatibilizers,including an ethylene-octene copolymer grafted maleic anhydride(POE-g-MA) and three maleic-anhydride-grafted polypropylenes(PP-g-MA) with different melt flow indexes(MFI),were used to improve the dispersion of organic clay in matrix.On the other hand,the effects of organic montmorillonite(OMMT) content on the nanocomposite structure in terms of clay dispersion in PPR matrix,thermal behavior and tensile properties were also studied. The X-ray diffraction(XRD) and transmission electron microscopy(TEM) results show that the organic clay layers are mainly intercalated and partially exfoliated in the nanocomposites.Moreover,a PP-g-MA compatibilizer(compatibilizer B) having high MFI can greatly increase the interlayer spacing of the clay as compared with other compatibilizers.With the introduction of compatibilizer D(POE-g-MA),most of the clays are dispersed into the POE phase,and the shape of the dispersed OMMT appears elliptic,which differs from the strip of PP-g-MA.Compared with virgin PPR,the Young’s modulus of the nanocomposite evidently increases when a compatibilizer C(PP-g-MA) with medium MFI is used.For the nanocomposites with compatibilizer B and C,their crystallinities(X_c) increase as compared with that of the virgin PPR. Furthermore,the increase of OMMT loadings presents little effect on the melt temperature(T_m) of the PPR/OMMT nanocomposites,and slight effect on their crystallization temperature(T_c).Only compatibilizer B can lead to a marked increases in crystallinity and T_c of the nanocomposite when the OMMT content is 2 wt%. 相似文献
5.
Haiyun Ma 《Polymer Degradation and Stability》2007,92(8):1439-1445
A melt blending method was used to prepare ABS/clay and ABS-g-MAH/clay nanocomposites. Cone calorimeter and advanced rheological extension system (ARES©) were employed to measure flammability and dynamic rheological properties. The main aim is to establish a relationship between the clay network structure and flammability properties of polymer nanocomposites. From the results of dynamic rheological measurements, it was found that the clay network structure was formed in ABS-g-MAH/clay nanocomposites, which strongly affected the flammability properties of the nanocomposites. The clay network improves the melt viscosity and results in restraint on the mobility of the polymer chains during combustion, which leads to significant improvement of flame retardancy for the nanocomposites. 相似文献
6.
Polystyrene (PS)/clay nanocomposites were successfully prepared by the γ-ray irradiation technique. Four different types of organophilic clays were used: three of the four contained a reactive group, while the other did not. Exfoliated PS/clay nanocomposites can be obtained by using reactive organophilic clay and intercalated PS/nanocomposites can be formed by using non-reactive ones, which was confirmed by X-ray diffraction (XRD) and by transmission electron microscopy (TEM). In the formation of exfoliated PS/nanocomposites, the effect of the double bond of the clay-intercalated agents is much more important than the alkyl chain length. The enhanced thermal properties of PS/nanocomposites were characterized by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). In particular, the enhancement of the thermal properties of PS/nanocomposites made using the reactive organophilic clay was much higher than that of the thermal properties of PS/nanocomposites incorporating non-reactive clay. 相似文献
7.
Prevulcanized natural rubber latex/clay aerogel nanocomposites 总被引:2,自引:0,他引:2
Tassawuth Pojanavaraphan 《European Polymer Journal》2008,44(7):1968-1977
Natural rubber latex (NR)/clay aerogel nanocomposites were produced via freeze-drying technique. The pristine clay (sodium montmorillonite) was introduced in 1-3 parts per hundred rubber (phr) in order to study the effect of clay in the NR matrix. The dispersion of the layered clay and the morphology of the nanocomposites were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cure characteristics, thermal stability, and the crosslink density of thermal and microwave-cured NR and its composites were investigated. XRD patterns indicated that both intercalated and exfoliated structures were observed at loadings of 1-3 phr clay. SEM studies revealed that the clay aerogel structure was formed at 3 phr clay loading. The increment in Shore A hardness of nanocomposites compared with pure NR signified excellent polymer/filler interaction and the reinforcing effect of the clay to rubber matrix. This was supported by an increase in maximum rheometric torque and crosslink density. The crosslink density of clay-filled NR vulcanizate was found to increase with the pristine clay content in both thermal and microwave curing methods. However, microwave-cured 2 and 3 phr-filled NR vulcanizates exhibited higher crosslink density than those which were thermal-cured under the same curing temperature. In addition, thermal stability studies showed that pristine clay accelerated the decomposition of NR by showing a slight decrease in onset and peak decomposition temperatures along with clay content. 相似文献
8.
9.
A. Frache O. MonticelliM. Nocchetti G. TartaglioneU. Costantino 《Polymer Degradation and Stability》2011,96(1):164-169
Epoxy resin nanocomposites containing home-made hydrotalcites (HTlc) have been prepared and their properties have been studied and compared with those of montmorillonite (MMT)-type layered silicates-based nanocomposites. Nanofiller dispersion in the polymer matrix has been evaluated by transmission (TEM) electron microscopy and wide angle X-ray diffraction (WAXD), while nanocomposite thermal properties have been studied in detail by thermogravimetric analysis (TGA/DTG) and cone calorimeter tests.The morphological studies have shown that the compatibilisation of the above two type of nanofillers allowed us to obtain nanostructured materials. As far as thermal properties are concerned, nanocomposites based on HTlc are found to decompose, both in air and nitrogen, following a trend similar to that of the neat polymer matrix, while in the case of the nanocomposite based on the organophilic MMT a slight improvement was found in air. Conversely, cone calorimetric tests have demonstrated that only the organophilic hydrotalcite was capable of decreasing the peak of the heat release rate in a relevant way. 相似文献
10.
Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion 总被引:1,自引:0,他引:1
In this work, polypropylene-clay nanocomposites are obtained and studied by using two different coupling agents, diethyl maleate and maleic anhydride. Two different clays, a commercial montmorillonite (Nanomer I30.TC) and a sodium bentonite purified and modified with octadecylammonium ions have also been used. The relative influence of each factor, matrix and clay modification, can be observed from structural analysis (SAXS, TEM) and mechanical properties. An explanation of the results is proposed according to the microstructure and chemical nature of the systems and the thermodynamic interactions operating during nanocomposite preparation. 相似文献
11.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix. 相似文献
12.
We successfully modified organic clays containing the urethane group by introducing a covalent bond between the silanol group on the clay side and the hydroxyl group of organic modifier in the silicate layer using 1,6-diisocyanatohexane (HDI), namely surface-treated montmorillonite (30BM), to increase both basal spacing and the favorable interaction between clay and polymer. The effect of the surface urethane modification of clay on poly (butylene succinate) (PBS)/30BM nanocomposites was studied. The results of transmission electron microscopy micrographs at a 10-nm resolution and X-ray diffraction measurements allowed us to examine the degree of the high exfoliation and the effect of surface urethane modification on clay dispersibility. As results of high exfoliation, PBS/30BM nanocomposites not only exhibited the high thermal properties, but also showed a remarkable increase in physical properties (e.g., tensile strength, Young's modulus, elongation at break) due to enhanced affinity between the clay and PBS matrix. Over all, the results suggest that wide gallery spacing and the predominant affinity between PBS and clay must be considered simultaneously to increase the degree of exfoliation and physical properties as key factors. 相似文献
13.
B. Hoffmann J. Kressler G. Stöppelmann Chr. Friedrich G.-M. Kim 《Colloid and polymer science》2000,278(7):629-636
14.
Nanocomposites of polyamide 6 with 5 wt.% multiwall carbon nanotubes are investigated to clarify their potential as regards the fire retardancy of polymers. The nanocomposites are investigated using SEM, electrical resistivity, and oscillatory shear rheology. The pyrolysis is characterized using thermal analysis. The fire behaviour is investigated with a cone calorimeter using different external heat fluxes, by means of the limiting oxygen index and the UL 94 classification. The fire residue is characterized using SEM. The comprehensive fire behaviour characterization not only allows the materials’ potential for implementation in different fire scenarios and fire tests to be assessed, but also provides detailed insight into the active mechanisms. The increased melt viscosity of the nanocomposites and the fibre-network character of the nanofiller are the dominant mechanisms influencing fire performance. The changes are found to be adjuvant with respect to forced flaming conditions in the cone calorimeter, but also deleterious in terms of flammability. 相似文献
15.
Jamaliah Sharif Khairul Zaman Mohd Dahlan Wan Md Zin Wan Yunus 《Radiation Physics and Chemistry》2007,76(11-12):1698-1702
Effect of electron beam irradiation on the thermal and mechanical properties of poly(ethylene-co-vinyl acetate) (EVA)/clay nanocomposites prepared by melt blending method has been investigated. The hot set test results show that elongation at high temperature under static load decreased with the increase of irradiation dose. The tensile modulus increased continuously with increasing dose. While the tensile strength increased up to 100 kGy, it decreased with further increase in dose. The elongation at break decreased continuously with increasing dose. Thermogravimetric analysis showed that thermal stability of the EVA/clay nanocomposites improved with increasing dose. The improvement in the mechanical and thermal properties is attributed to the formation of radiation-induced crosslinking as evidenced by the gel content results. 相似文献
16.
Eric Pollet 《European Polymer Journal》2006,42(6):1330-1341
We report here on the melt intercalation preparation of polymer/clay nanocomposites based on three commercial synthetic biodegradable polyesters: EastarBio Ultra, Ecoflex, and Bionolle, respectively. The montmorillonite clay addition is performed either by direct dispersion of Cloisite 30B in the polyester matrix or by dispersing a “PCL-grafted Cloisite 30B” masterbatch in the biodegradable polyesters. All obtained nanocomposites display an intercalated morphology as attested by X-ray diffraction measurements. The various analyses clearly show that the Bionolle (BIO) matrix gives the best results. Morphological characterization and mechanical properties of these nanocomposites also show that the “masterbatch route” leads to poor results as a consequence of the very low compatibility between the poly(ε-caprolactone) (PCL) of the masterbatch and the three other polyester matrices. In a second part, nanocomposites based on the BIO matrix are prepared by direct dispersion of the organo-clay in the presence of three different metal-based catalysts with the aim to promote transesterification reactions between the nanocomposite constituents. The mechanical properties and morphological characterization of these nanocomposites show that the tin-based catalyst (Sn) is the more efficient. Indeed, the effectiveness of transesterification reactions taking place between the ester functions of the BIO matrix and the hydroxyl groups of the organo-clay and the resulting “grafting” of BIO chains on the organo-clay surface are confirmed by thermogravimetric analyses performed after the extraction procedure. TEM observations show that this catalyst enhances the clay platelets exfoliation within the BIO matrix as a consequence of the transesterification reactions. Nanocomposites prepared in presence of Sn show better clay dispersion and enhanced stiffness with a 60% increase in Young’s modulus. 相似文献
17.
The crystallization behavior and fine structure of poly(butylene succinate) (PBS) nanocomposites with intercalation (30B20) and exfoliation (30BM20) morphologies, respectively, were investigated via isothermal crystallization testing and synchrotron small-angle X-ray scattering (SAXS). The dynamic viscosity of 30BM20 was markedly increased due to favorable interactions between the PBS matrix and the urethane group on the clay surface. However, 30BM20 showed similar crystallization rates to that of homo PBS because the surface urethane modification for 30BM20 precluded PBS matrix from the metallic group into clay to difficult in contact with each other, resulting in a reduced nucleation activity for the metallic group. SAXS profiles revealed that the long period and amorphous region size for 30B20 drastically decreased during isothermal crystallization. Meanwhile, 30BM20 was similar to those of homo PBS. This result also supports the above explanation for isothermal crystallization behavior. Considering all results in total, the introduction of a urethane modification considerably enhanced the physical properties of PBS but caused delayed crystallization rates. 相似文献
18.
Weifu Dong Xiaohong Zhang Hua Gui Qingguo Wang Jianming Gao Jinmei Lai Jinliang Qiao 《European Polymer Journal》2006,42(10):2515-2522
Three nylon-6/unmodified clay/rubber nanocomposites with high toughness, high stiffness, high heat resistance and reduced flammability were studied in this paper, on basis of three compound powders of ultra-fine full-vulcanized powdered rubber (UFPR)/montmorillonite (UFPRM). It was found that all of the three UFPRs used in the study can help the silicate layers without organic treatment to be exfoliated in the nylon-6 matrix, despite some differences in compatibilities between them and nylon-6. Accordingly, the clay in different UFPRMs at the same loading content can lead to a similar improvement in stiffness and heat resistance of nanocomposites. In other words, UFPRs having different compatibilities with nylon-6 do not affect the stiffness and heat resistance of nanocomposites largely. However, the nylon-6 nanocomposites, modified with different UFPRMs, show different superior properties. Butadiene styrene vinyl-pyridine UFPRM (VP-UFPRM) is more effective in improving toughness of nylon-6. Nylon-6/silicone UFPRM (nylon-6/S-UFPRM) nanocomposite exhibits more reduced flammability, good flowability and high thermal stability. As for nylon-6/acrylate UFPRM (nylon-6/A-UFPRM) nanocomposite, it shows high toughness and thermal stability. Furthermore, the mechanism of unmodified clay exfoliation during the melt compounding and the effect of different UFPRs on the properties of the nylon-6/UFPRM nanocomposites are also discussed. 相似文献
19.
ABS/organo montmorillonite (OMT) nanocomposites and ABS/brominated epoxy resin-antimony oxide (BER-AO)/OMT nanocomposites were prepared via melt compounding. The dispersion of OMT in nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. The results revealed an intercalated structure in ABS/OMT nanocomposites and the OMT layers mainly distribute in SAN phase. However, a completely exfoliated structure was found in ABS/BER-AO/OMT nanocomposites and OMT layers preferentially located in the BER phase which indicated that the OMT platelets had a much higher affinity with brominated epoxy resin than ABS resin. Based on the above morphological results, a schematic diagram of the ABS/OMT, ABS/BER-AO/OMT nanocomposites was established. The thermal degradation behavior was characterized by thermogravimetry. The results showed that the exfoliation of OMT can enhance the thermal stability of pure ABS resin and ABS/BER blends. An increase in the limited oxygen index (LOI) value was observed with the addition of OMT and it was found that such an enhancement is closely related to the morphologies of the chars formed after combustion. A synergistic effect between OMT and BER-AO during the combustion of the nanocomposites was found and a schematic mechanism was presented. 相似文献
20.
Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH2) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G′) values of suspensions containing MWCNTs and MWCNT-NH2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G″) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E′) and the loss modulus (E″) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (Tg) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties. 相似文献