首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
《European Polymer Journal》2006,42(8):1786-1797
New aliphatic–aromatic α,ω-diols containing sulfur in aliphatic chain: 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol) [EBTE], 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) [EBTP], 4,4′-(ethane-1,2-diyl)bis(benzenethiohexanol) [EBTH], 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) [EBTD], and 4,4′-(ethane-1,2-diyl)bis(benzenethioundecanol) [EBTU] were prepared by the condensation reaction of 4,4′-(ethane-1,2-diyl)bis(benzenethiol) with suitable halogen alcohols in aqueous sodium hydroxide solution. Thermoplastic nonsegmented polyurethanes containing sulfide linkages were synthesized from these diols, and hexane-1,6-diyl diisocyanate (HDI) or 4,4′-methylenediphenyl diisocyanate (MDI) by solution and melt polymerization. The reaction was carried out at 1:1 or 1.05:1 molar ratios of isocyanate and hydroxy groups in the presence of dibutyltin dilaurate as a catalyst.The structures of the diols were determined by using elemental analysis, FTIR and 1H NMR spectroscopy, and X-ray diffraction analysis. Thermal characteristics of the diols were determined by using differential scanning calorimetry (DSC). The polymers were studied to describe their structures and physicochemical, thermal (by DSC and thermogravimetric analysis) and tensile properties as well as Shore A/D hardness.All the polyurethanes possessed partially crystalline structures. Their melting temperatures were in the range of 94–179 °C (HDI) and 105–207 °C (MDI). The MDI-based polyurethanes showed higher tensile strengths, up to ∼50 MPa.  相似文献   

2.
Several new polyurethanes containing cholesterol and phosphatidylcholine analogous moieties were synthesized by addition polymerization of 2-[bis(2-hydroxyethyl)methylammonio]ethyl 5-cholesten-3β-yl phosphate ( 2 ) with diisocyanates such as hexamethylene diisocyanate (HDI), 2,4-tolylene diisocyanate (TDI), 4,4′-methylenediphenyl diisocyanate (MDI) and m-xylylene diisocyanate (XDI), respectively. They were characterized by their IR and 1H NMR spectral data and elemental analyses. Preliminary studies suggest that these polyurethanes show the viscosity behavior of common polyelectrolytes.  相似文献   

3.
Main‐chain liquid‐crystalline polyurethanes were synthesized based on a high aspect ratio mesogenic diol (4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐benzoic acid 4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐phenyl ester) as a chain extender; polycaprolactone (PCL) diol soft segments of different number‐average molecular weights (530, 1250, or 2000); and different diisocyanates, including 1,4‐hexamethylene diisocyanate (HMDI), 4,4′‐methylene bis(cyclohexyl isocyanate) (H12MDI), and 4,4′‐methylene bis(phenyl isocyanate) (MDI). The structure of the polymers was confirmed with Fourier transform infrared spectroscopy, and differential scanning calorimetry and polarizing microscopy measurements were carried out to examine the liquid‐crystalline and thermal properties of the polyurethanes, respectively. The mesogenic diol was partially replaced with 20–50 mol % PCL. A 20 mol % mesogen content was sufficient to impart a liquid crystalline property to all the polymers. The partial replacement of the mesogenic diol with PCL of various molecular weights, as well as the various diisocyanates, influenced the phase transitions and the occurrence of mesophase textures. Characteristic liquid‐crystalline textures were observed when a sufficient content of the mesogenic diol was present. Depending on the flexible spacer length and the mesogenic content, grained and threadlike textures were obtained for the HMDI and H12MDI series polymers, whereas the polyurethanes prepared from MDI showed only grained textures for all the compositions. The polymers formed brittle films and could not be subjected to tensile tests. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1527–1538, 2002  相似文献   

4.
Polymeric light-emitting diodes (PLEDs) using high-performance hole-transport polyurethanes (PUs) have been fabricated. The PUs were prepared from the condensation polymerization of (EE)-1,4-bis(2-hydroxystyryl)benzene, an oligo para-phenylene-(E)-vinylene (OPV) unit, with toluene diisocyanate (TDI), isophorone diisocyanate (IPDI) or dicyclohexylmethane 4,4′-diisocyanate (H12MDI), respectively. The condensation polymerization was end-capped with 4-tert-butylphenol as the terminal group. The PLED having the PU layer inserted between PEDOT:PSS (HIL) and MEH-PPV (EML) demonstrated superior current efficiency and low turn-on voltage when comparing to the reference devices of ITO/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm) as well as ITO/PEDOT:PSS(30 nm)/MEH-PPV(50 nm)/Ca(10 nm)/Ag(100 nm). In particularly, the best device performance was realized with the PU of OPV-IPDI as the hole-transport layer, resulting 53 times and 2.72 times of current efficiency enhancement as well as 1.5 V and 1 V voltage reduction of the turn-on voltage, respectively, when compared against the reference devices. Besides, our experiments also showed that the PU polymer could also be applied for flexible PLED with similar performance enhancement. Based on the promising results, we concluded that OPV-IPDI was a good hole-transport material for light-emitting diode application.  相似文献   

5.
Poly(ε‐caprolactone)‐based segmented polyurethanes (PCLUs) were prepared from poly(ε‐caprolactone) diol, diisocyanates (DI), and 1,4‐butanediol. The DIs used were 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluenediisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small‐angle X‐ray scattering, and dynamic mechanical analysis were employed to characterize the two‐phase structures of all PCLUs. It was found that HDI‐ and MDI‐based PCLUs had higher degree of microphase separation than did IPDI‐ and TDI‐based PCLUs, which was primarily due to the crystallization of HDI‐ and MDI‐based hard‐segments. As a result, the HDI‐based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard‐segment domains during the sample deformation was responsible for the incomplete shape‐recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 557–570, 2007  相似文献   

6.
Novel polyurethanes consisting of polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) or PIB/poly(hexamethylene carbonate) (PC) soft co‐segments in combination with 4,4′‐methylene‐bis(cyclohexyl isocyanate)/1,6‐hexanediol, 1,4‐butanediol, or 1,6‐hexamethylene diamine hard segments exhibit excellent mechanical properties (upto 31 MPa tensile strength with 700% elongation) together with unprecedented oxidative/hydrolytic stability. A structural model of the morphology of these polyurethanes was developed that reflects this combination of properties. The key new elements of our model are H bridges between the PTMO and PC type soft and urethane hard segments, which compatibilize the soft and hard domains, and the presence of large quantities of chemically resistant PIB soft segments that protect the other oxidatively/hydrolytically vulnerable constituents. A variety of FTIR, DSC, SAXS, AFM, and DMTA experiments strongly support the proposed morphological model. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6180–6190, 2009  相似文献   

7.
Several polyurethanes based on bis-(p-oxymethylphenyl) terephthalate (BOPT) were synthesized and studied with respect to some of their thermal properties. BOPT exhibits a mesomorphic phase at 252–264°C. Polymerization was carried out by equimolar reaction with hexamethyl-ene diisocyanate (HDI), 4,4-dicyclohexylmethane diisocyanate (H12MDI) α,α'-diisocyanate-1,3-dimethylcyclohexane (H6 XDI), 4,4′-diphenylmeth-ane diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI), and phenylene diisocyanate (PDI). It became clear that polyurethanes obtained from BOPT with HDI, H12MDI, H6XDI, and TDI have mesomorphic phases at 243–291, 214–250, 172–229, and 180–234°C, respectively, as determined by DSC and polarized microscopy, and that all polyurethanes are crystalline as evidenced by x-ray diffraction.  相似文献   

8.
A series of polyurea urethane block polymers based on either aminopropyl-terminated polycyanoethylmethylsiloxane (PCEMS) soft segments or soft segment blends of PCEMS and polytetramethylene oxide (PTMO) were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) chain-extended with 1,4-butanediol. The hard segment content varied from 11 to 36%, whereas the PTMO weight fraction in the soft segment blends varied from 0.1 to 0.9. The cyanoethyl side group concentration was also varied during the synthesis of the PCEMS oligomer. The morphology and properties of these polymers were studied by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical and tensile testing, and small-angle x-ray scattering. These materials exhibited microphase separation of the hard and soft segments; however, attaching polar cyanoethyl side groups along the apolar siloxane chains promoted phase mixing in comparison with polydimethylsiloxane-based polyurethanes. The increased phase mixing is postulated to lead to improved interfacial adhesion and thus can account for the observed improvement in ultimate tensile properties compared with polydimethylsiloxane-based polyurethanes. Both hard segment content and cyanoethyl concentration are important factors governing the morphological and tensile properties of these polymers.  相似文献   

9.
Liquid crystalline polyurethanes were prepared from 4,4′-bis(2-hydroxyethoxy)biphenyl (BHBP) and 2,4-tolylene diisocyanate (TDI). The effect of partial replacement of BHBP by 25–75 mol % poly(oxytetramethylene) diol (PTMO, M n = 250) on the liquid crystalline properties was studied. The BHBP/TDI/PTMO polyurethanes were obtained by one- and two-step polyaddition. The polyurethanes were investigated by DSC, polarizing microscopy, x-ray, and IR spectroscopy. The molecular weight distribution was determined by GPC. The morphology of the polymers was investigated by the SALS method. Thermogravimetric investigations of the polyurethanes were also performed. All polyurethanes containing BHBP units have liquid crystalline properties. Partial replacement of BHBP by PTMO-250 considerably changes the phase transition temperatures and the range of mesophase occurrence. More homogeneous polyurethanes were obtained, if the two-step polyaddition method was applied. The polyaddition method affects the phase transition temperatures. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Morphology and tensile properties of model thermoplastic polyurethanes (TPUs) containing polyisobutylene (PIB) or poly(tetramethylene oxide) (PTMO) based soft segment and 4,4‐methylene bis(phenyl isocyanate) (MDI) and 1,4‐butanediol (BDO) based monodisperse hard segments (HSs), consisting of exactly two to four MDI units extended by BDO, were investigated. Using FT‐IR spectroscopy, increased hydrogen bonded C?O fraction was observed in model TPUs as the HS size increased. The hydrogen bonded C?O fraction was higher in PIB based TPUs compared with PTMO based TPUs, indicating higher phase separation in PIB based TPUs. The morphology of TPUs was investigated using AFM phase imaging, which showed ribbon‐like or interconnected hard domains in PTMO based model TPUs and randomly dispersed hard domains in PIB based model TPUs. SAXS revealed that the degree of phase separation in the model TPUs was higher than in their polydisperse analogues. Domain spacing as well as interfacial thickness increased with the increasing HS size, and both values were higher in PTMO based TPUs. The tensile analysis indicated that model TPUs exhibited higher modulus and slightly higher elongation compared with their polydisperse analogues. Only in PTMO based model TPUs, strain induced crystallization was observed above 300% elongation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2485–2493  相似文献   

11.
Novel polyurethanes have been synthesized by the condensation of two rigid diols, biphenyl-4,4'-diol (BPH(4,4')D) and 4-hydroxyphenyl-4-hydroxybenzoate (4HPH4'HB), with the flexible hexamethylene diisocyanate (HDI). Their phase diagrams were established by means of differential scanning calorimetry, nuclear magnetic resonance and polarizing optical microscopy. Poly(4HPH4'HB/HDI) was found to display a nematic phase between 140 and 199°C; poly (BPH(4,4')D/HDI) also exhibits a mesomorphic phase, but so far the nature of this phase has not been established.  相似文献   

12.
New thermoplastic nonsegmented thiopolyurethanes were obtained from the low-melting aliphatic–aromatic thiodiols 4,4′-bis(2-hydroxyethylthiomethyl)benzophenone (BHEB), 4,4′-bis(3-hydroxypropylthiomethyl)benzophenone (BHPB), and 4,4′-bis(6-hydroxyhexylthiomethyl)benzenophenone(BHHB) as well as hexamethylene diisocyanate (HDI), both by melt and solution polymerization with dibutyltin dilaurate as the catalyst. The effect of various solvents on molecular-weight values was examined. The polymers with the highest reduced viscosities (0.63–0.88 dL/g) were obtained when the polymerization was carried out in a solution of tetrachloroethane, N,N-dimethylacetamide, and N,N-dimethylacetamide or N,N-dimethylformamide for BHEB-, BHPB-, and BHHB-derived polyurethanes, respectively. These polymers with a partially crystalline structure showed glass-transition temperatures (Tg) in the range of −1 to 39 °C, melting temperatures (Tm) in the range of 107 to 124 °C, and thermal stabilities up to 230 to 240 °C. The BHEB-derived polyurethane is a low-elasticity material with high tensile strength (ca. 50 MPa), whereas the BHPB- and BHHB-derived polyurethanes are more elastic, showing yield stress at approximately 16 MPa. We also obtained segmented polyurethanes by using BHHB, HDI, and 20 to 80 mol % poly(oxytetramethylene) glycol (PTMG) of n = 1000 as the soft segment. These are high-molecular thermoplastic elastomers that show a partially crystalline structure. Thermal properties were investigated by thermogravimetric analysis and differential scanning calorimetry. The increase in PTMG content decreases the definite Tg and increases the solubility of the polymers. These segmented polyurethanes exhibit the definite Tg (−67 to −62 °C) nearly independent of the hard-segment content up to approximately 50 wt %, indicating the existence of mainly phase-separated soft and hard segments. Shore A/D hardness and tensile properties were also determined. As the PTMG content increases, the hardness, modulus of elasticity, and tensile strength decrease, whereas elongation at break increases. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4140–4150, 1999  相似文献   

13.
Novel linear homogeneous polyurethanes and polyureas with enhanced hydrophilic character have been successfully prepared from sugar‐based monomers having their hydroxyl groups free or partially protected. By the reaction of primary hydroxyl groups of xylitol with dimethyl hexamethylene dicarbamate (HMDC) or di‐tert‐butyl‐4,4′‐diphenyl methyl dicarbamate (MDC), two new linear semicrystalline polyurethanes [PU(X‐HMDC) and PU(X‐MDC)] have been prepared. Likewise, by the reaction of xylitol with the analogous diisocyanates hexamethylene diisocyanate (HMDI) or 4,4′‐methylenebis(phenyl isocyanate) (MDI), similar polyurethanes [PU(X‐HMDI) and PU(X‐MDI)] were obtained. However, these latter polyurethanes present some degree of crosslinking because of the higher reactivity of the diisocyanate comonomers. Linear hydrophilic polyureas having free hydroxyl groups joined to the main chain have also been prepared by the reaction of the same diisocyanates (HMDI and MDI) with 1,6‐diamino‐1,6‐dideoxy‐D ‐mannitol and 1,6‐diamino‐1,6‐dideoxy‐3:4‐O‐isopropylidene‐D ‐mannitol. As far as we are aware, this kind of polyhydroxylated polyurea has not been previously described in the literature. The new polymers were characterized by standard methods (elemental analyses, gel permeation chromatography, IR, and NMR). The polyurethanes were hydrolytically degradable under physiological conditions, in contrast with less‐hydrophilic linear polyurethanes previously described. The thermal properties of the novel polymers were investigated by thermogravimetric analysis and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Three series of new thermoplastic, high molecular weight, segmented thiopolyurethanes were synthesized by a one-step melt polymerization from newly obtained thiodiols, including bis[4-(2-hydroxyethyl)thiomethylphenyl]methane, bis[4-(3-hydroxypropyl)thiomethylphenyl]methane, and bis[4-(6-hydroxyhexyl)thiomethylphenyl]methane (BHHM), as chain extenders; hexamethylene diisocyanate; and 20–80 mol % poly(oxytetramethylene) glycol (PTMG; number-average molecular weight = 1000) as the soft segment. Solution polymerization with the chain extender BHHM gave considerably lower molecular weight polymers. The structures of all the polyurethanes were determined with Fourier transform infrared and X-ray diffraction analysis. The thermal properties of the polyurethanes were examined with differential scanning calorimetry and thermogravimetric analysis. Shore A/D hardness and tensile properties were also determined. All the polyurethanes showed partially crystalline structures; those obtained with 40–80 mol % PTMG were elastomers. An increase in the PTMG content decreased hardness, modulus of elasticity, and tensile strength, whereas elongation at break increased. BHHM-based polyurethanes obtained in the melt showed the best tensile properties. The polyurethanes exhibited definite glass transitions (−70 to −59 °C) that were nearly independent of the hard-segment content up to about 50 wt % (40–80 mol % PTMG), indicating the existence of mainly microphase-separated soft and hard segments. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1733–1742, 2001  相似文献   

15.
A set of novel linear polyurethanes was synthesized by reaction in solution of 1,6‐hexamethylene diisocyanate (HDI) or 4,4′‐methylene‐bis(phenyl diisocyanate) with 2,3‐acetalized threitols, specifically, 2,3‐O‐methylidene‐L ‐threitol and 2,3‐O‐isopropylidene‐D ‐threitol. The polyurethanes containing acetalized threitols had weight‐average molecular weights between 40,000 and 65,000 Da. Most of them were amorphous and they displayed Tg higher than their unsubstituted analogs. Deprotection of acetalized polyurethanes by treatment with acid allowed preparing semicrystalline polyurethanes bearing two free hydroxyl groups in the repeating unit. The crystalline structure and crystallizability of the hydroxylated polyurethane made from HDI were investigated taken as reference the polyurethane made from 1,4‐butanediol and HDI. The hydrolytic degradability of threitol derived polyurethanes was comparatively evaluated under a variety of conditions. Highest degradation rates were obtained upon incubation at pH 10 at temperatures above Tg, the aliphatic hydroxylated polyurethane being the fastest degrading compound. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7996–8012, 2008  相似文献   

16.
New linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of diphenylmethane‐4,4′‐bis(methylthioacetic acid) (DBMTAA) or diphenylmethane‐4,4′‐bis(methythiopropionic acid) (DBMTPA) and diphenylmethane‐4,4′‐bis(methylthioethanol) (DBMTE) at equimolar ratio of reagents (polyesters E‐A and E‐P) as well as at 0.15 molar excess of diol (polyesters E‐AOH and E‐POH). The kinetics of these reactions was studied at 150, 160, and 170°C. Reaction rate constants (k2) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. E‐A and E‐P (n = 4400, 4600) were used for synthesis of new rubber‐like polyester‐sulfur compositions, by heating with elemental sulfur, whereas oligoesterols E‐AOH and E‐POH (M̄n = 2500, 2900) were converted to thermoplastic polyurethane elastomers by reaction with hexamethylene diisocyanate (HDI) or methylene bis(4‐phenyl isocyanate) (MDI). The structure of the polymers was determined by elemental analysis, FT‐IR and liquid or solid‐state 1H‐, 13C‐NMR spectroscopy, and X‐ray diffraction analysis. Thermal properties were measured by DTA, TGA, and DSC. Hardness and tensile properties of polyurethanes and polyester‐sulfur compositions were also determined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 835–848, 1999  相似文献   

17.
This work is a continuation of our earlier investigations of liquid crystalline polyurethanes prepared from 4,4′-bis(2-hydroxyethoxy) biphenyl (BHBP), 2,4-tolylene diisocyanate (TDI), and poly (oxytetramethylene) diols (PTMO). The annealing effects on the thermal properties of the investigation polyurethanes are presented for three samples with the same BHBP content, different flexible spacer length, and different molecular weight of the polyurethanes. The annealed polyurethanes were investigated by means of DSC, and polarizing microscopy. The results of the thermal analysis show that the temperatures of phase transitions depend on the annealing temperature and time. These dependences are different for different molecular weights. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
A new class of optically active poly(amide-imide)s based on an α-amino acid was synthesized via direct polycondensation reaction of different diisocyanates with a chiral diacid monomer. The step-growth polymerization reactions of N-trimellitylimido-S-valine (TISV) (1) with 4,4′-methylene-bis(4-phenylisocyanate) (MDI) (2) was performed under microwave irradiation, as well as solution polymerization under graduate heating and reflux conditions. The optimized polymerization conditions for each method were performed with tolylene-2,4-diisocyanate (TDI) (3), hexamethylene diisocyanate (HDI) (4), and isophorone diisocyanate (IPDI) (5) to produce optically active poly(amide-imide)s via diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.02-1.10 dL/g. Decomposition temperatures for 5% weight loss (T5) occurred above 300 °C (by TGA) in nitrogen atmospheres. These polymers are optically active, thermally stable and soluble in amide-type solvents. Some structural characterization and physical properties of this new optically active poly(amide-imide)s are reported.  相似文献   

19.
New thermoplastic polyurethaneureas (TPUU) based on polyisobutylene (PIB) and poly(tetramethylene oxide) (PTMO) segments have been synthesized possessing tensile properties comparable to conventional PTMO based TPUs. PIB based TPUU containing 35 weight (wt)% hard segment was synthesized by chain extension of H2N-Allyl-PIB-Allyl-NH2 with 4,4′ -methylene bis(phenylisocyanate) (MDI) and 1,4-butanediol (BDO) in toluene. The ultimate tensile strength (UTS) = 12 MPa and ultimate elongation = 70% were inferior to PTMO based polyurethane (UTS = 35 MPa, elongation at break = 600%). H2N-Allyl-PIB-Allyl-NH2 and HO-PTMO-OH in different proportions were chain extended in presence of MDI and BDO to obtain TPUUs containing 35 wt% hard segment. The polymers exhibited M ns = 84000–138000 with polydispersity indices (PDIs) = 1.7–3.7. The UTS = 23–32 MPa and elongation at break = 250–675% was comparable to that of PTMO based polyurethane and significantly higher than the PIB based TPUU with the same Shore hardness. The Young's modulus of the polymers was strongly dependent and directly proportional to the PIB wt% in the SS of the TPUUs.  相似文献   

20.
The synthesis, characterization, and structure–property behavior of polyurethanes containing polyisobutylene (PIB)/poly(tetramethylene oxide) (PTMO) soft co‐segments and bis(4‐isocyanatocyclohexyl)methane (HMDI)/hexanediol (HDO) hard segments is presented. The mechanical (stress/strain, hardness, and hysteresis) properties of these novel polyurethanes were investigated over a broad composition range. PIB‐based polyurethanes with HMDI/HDO hard segments showed better mechanical properties than earlier polyurethanes containing highly crystalline hard segments. The addition of moderate amounts (20% by weight) of PTMO significantly increased both tensile strengths and elongation. In the presence of larger amounts of PIB, these polyurethanes are expected to possess oxidative/hydrolytic/enzymatic stabilities superior to commercially available polyurethanes. These polyurethanes are softer and exhibit hysteresis superior to or comparable with conventional polyurethanes. According to initial thermal studies, these materials show good melt processibility. Overall, the mechanical properties of PIB based hybrid polyurethanes are similar to commercially important polyurethane type biomaterials. Our results show that the incorporation of PTMO segments to PIB‐based polyurethanes significantly improves elastomeric properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5278–5290, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号