首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   

2.
Fluorescent/magnetic nanoparticles are of interest in many applications in biotechnology and nanomedicine for its living detection. In this study, a novel method of surface modification of nanoparticles was first used to modify a fluorescent monomer on the surfaces of magnetic nanoparticles directly. This was achieved via iron(III)-mediated atom-transfer radical polymerization with activators generated by electron transfer (AGET ATRP). Fluorescent monomer 9-(4-vinylbenzyl)-9H-carbazole (VBK) was synthesized and was grafted from magnetic nanoparticles (ferroferric oxide) via AGET ATRP using FeCl(3)·6H(2)O as the catalyst, tris(3,6-dioxaheptyl)amine (TDA-1) as the ligand, and ascorbic acid (AsAc) as the reducing agent. The initiator for ATRP was modified on magnetic nanoparticles with the reported method: ligand exchange with 3-aminopropyltriethoxysilane (APTES) and then esterification with 2-bromoisobutyryl bromide. After polymerization, a well-defined nanocomposite (Fe(3)O(4)@PVBK) was yielded with a magnetic core and a fluorescent shell (PVBK). Subsequently, well-dispersed bifunctional nanoparticles (Fe(3)O(4)@PVBK-b-P(PEGMA)) in water were obtained via consecutive AGET ATRP of hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate (PEGMA). The chemical composition of the magnetic nanoparticles' surface at different surface modification stages was investigated with Fourier transform infrared (FT-IR) spectra. The magnetic and fluorescent properties were validated with a vibrating sample magnetometer (VSM) and a fluorophotometer. The Fe(3)O(4)@PVBK-b-P(PEGMA) nanoparticles showed an effective imaging ability in enhancing the negative contrast in magnetic resonance imaging (MRI).  相似文献   

3.
A series of superhydrophobic poly(methacryloxypropyltrimethoxysilane, MPTS‐b‐2,‐2,3,3,4,4,4‐heptafluorobutyl methacrylate, HFBMA)‐grafted silica hybrid nanoparticles (SiO2/PMPTS‐b‐PHFBMA) were prepared by two‐step surface‐initiated atom transfer radical polymerization (SI‐ATRP). Under the adopted polymerization conditions in our previous work, the superhydrophobic property was found to depend on the SI‐ATRP conditions of HFBMA. As a series of work, in this present study, the effects of polymerization conditions, such as the initiator concentration, the molar ratio of monomer and initiator, and the polymerization temperature on the SI‐ATRP kinetics and the interrelation between the kinetics and the surface properties of the nanoparticles were investigated. The results showed that the SI‐ATRP of HFBMA was well controlled. The results also showed that both the surface microphase separation and roughness of the hybrid nanoparticles could be strengthened with the increase of the molecular weight of polymer‐grafted silica hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technical was successfully employed to modify hydroxyapatite (HAP) nanoparticles with poly(methyl methacrylate) (PMMA). The peroxide initiator moiety for reverse ATRP was covalently attached to the HAP surface through the surface hydroxyl groups. Reverse ATRP of methyl methacrylate (MMA) from the initiator-functionalized HAP was carried out, and the end bromide groups of grafted PMMA initiated ATRP of MMA subsequently. Fourier transformation infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) were employed to confirm the grafting and to characterize the nanoparticle structure. The grafted PMMA gave HAP nanoparticles excellent dispersibility in MMA monomer. As the amount of grafted PMMA increased, the dispersibility of surface-grafted HAP and the compressive strength of HAP/PMMA composites were improved.  相似文献   

5.
Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graftpolymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybrid nanoparticles. 2-(4-Chloromethylphenyl) ethyltriethoxysilane (CTES) was immobilized on the surface of silica nanoparticles throughcondensation reaction of the silanol groups on silica with triethoxysilane group of CTES. Then ATRP of St was initiated bythis surface-modified silica nanoparticles bearing benzyl chloride groups, and formed PSt graft chains on the surface of silicananoparticles. The thickness of the graft chains increased with reaction time. End group analysis confirmed the occurrence ofATRP. Thermal analysis indicated that thermal stabilization of these resulting hybrid nanoparticles also increases withpolymerization conversion. The results above show that this "grafting from" reaction could be used for the preparation ofpolymer-inorganic hybrid nanoparticles with controlled structure of the polymer's end groups.  相似文献   

6.
The article presents the modification of ash wood via surface initiated activators regenerated by electron transfer atom transfer radical polymerization mediated by elemental silver (Ag0 SI-ARGET ATRP) at a diminished catalyst concentration. Ash wood is functionalized with poly(methyl methacrylate) (PMMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to yield wood grafted with PMMA-b-PDMAEMA-Br copolymers with hydrophobic and antibacterial properties. Fourier transform infrared (FT-IR) spectroscopy confirmed the covalent incorporation of functional ATRP initiation sites and polymer chains into the wood structure. The polymerization kinetics was followed by the analysis of the polymer grown in solution from the sacrificial initiator by proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). The polymer layer covalently attached to the wood surface was observed by scanning electron microscopy (SEM). The hydrophobic properties of hybrid materials were confirmed by water contact angle measurements. Water and sodium chloride salt aqueous solution uptake tests confirmed a significant improvement in resistance to the absorption of wood samples after modification with polymers. Antibacterial tests revealed that wood-QPDMAEMA-Br, as well as wood-PMMA-b-QPDMAEMA-Br, exhibited higher antibacterial activity against Gram-positive bacteria (Staphylococcus aureus) in comparison with Gram-negative bacteria (Escherichia coli). The paper presents an economic concept with ecological aspects of improving wood properties, which gives great opportunities to use the proposed approach in the production of functional hybrid materials for industry and high quality sports equipment, and in furniture production.  相似文献   

7.
《Solid State Sciences》2004,6(8):879-885
The synthesis of γ-Fe2O3/poly-(methyl methacrylate)-core/shell nanoparticles and their magnetic properties are reported. Specific γ-Fe2O3 nanoparticles capable of initiating atom transfer radical polymerization (ATRP) were prepared by a ligand exchange reaction of ((chloromethyl)phenylethyl)-dimethylchlorosilane and caprylate-capped γ-Fe2O3 nanoparticles of 4 nm in diameter, and the ATRP of methyl methacrylate was carried out subsequently. These nanoparticles were characterized with Fourier transform infrared spectroscopy, transmission electron microscopy and Mössbauer spectroscopy. Low temperature magnetic properties investigated with SQUID magnetometry revealed that the coercivity and the blocking temperature changed slightly owing to surface effects.  相似文献   

8.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

9.
The surface grafting onto ultrafine silica via reverse ATRP of methyl methacrylate initiated by peroxide groups introduced onto the surface and conventional ATRP of Styrene initiated by the hybrid nanoparticles were investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polymer layer. The polymerization was closely controlled in solution at quite low temperature such as 70 °C. In both cases, linear kinetic plots, linear plots of molecular weight (Mn) versus conversion, in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (Mw/Mn) for the grafted polymer samples were observed. Hydrolysis of silica cores by hydrofluoric acid treatment enabled characterization of cleaved polymer using GPC. Ultrathin films of hybrid nanoparticles were examined using TEM and AFM.  相似文献   

10.
Poly(siloxane‐fluoroacrylate)‐grafted silica hybrid nanoparticles were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP). The silica nanoparticles with α‐bromo‐ester initiator group for copper‐mediated ATRP were prepared by the self‐assembled monolayers of (3‐aminopropyl)triethoxysilane and 2‐bromoisobutyrate bromide. Well‐defined diblock copolymer brushes consisting of poly(methacryloxypropyltrimethoxysilane) and poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) blocks were obtained by using initial homopolymer brushes as the macroinitiators for the SI‐ATRP of the second monomer. Chemical compositions and structures of the nanoparticles were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. Surface properties and morphology of the nanoparticles were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurement. It is revealed that the surfaces of the nanocomposites are rough at the microscale and nanoscale. The formation reason of the superhydrophobic surfaces was also discussed in this work. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
We report on the fabrication and performances of a solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with a covalently attached polyacrylonitrile (PAN)/multi-walled carbon nanotubes (MWCNTs) composite. This new coating is obtained by atom transfer radical polymerization (ATRP) of acrylonitrile mixed with MWCNTs. ATRP is initiated from 11-(2-bromo-2-methylpropionyloxy)-undecyl-phosphonic acid molecules grafted on the wire surface via the phosphonic acid group. The extraction performances of the fibers are assessed on different classes of compounds (polar, non-polar, aromatic, etc.) from water solutions by headspace extraction. The optimization of the parameters affecting the extraction efficiency of the target compounds was studied as well as the reproducibility and the repeatability of the fiber. The fibers sustain more than 200 extractions during which they remain chemically stable and maintain good performances (detection limits lower than 2 μg/l, repeatability, etc.). Considering their robustness together with their easy and inexpensive fabrication, these fibers could constitute promising alternatives to existing products.  相似文献   

12.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

14.
聚丙烯酰胺修饰Fe_3O_4磁性纳米粒子的制备与表征   总被引:1,自引:0,他引:1  
首先通过化学处理在Fe3O4磁性纳米粒子表面引入Si—H键,然后通过选择性的硅氢加成反应制备了一个端基带溴的磁性引发剂,并利用原子转移自由基聚合(ATRP)技术,在该磁性引发剂表面接枝了聚丙烯酰胺高分子,该聚丙烯酰胺高分子展现出分子量高度可控性和窄的分子量分布.经聚丙烯酰胺修饰后Fe3O4磁性纳米粒子的比饱和磁化强度为58.5 emu.g-1,与未修饰纳米Fe3O4相比下降约20%.  相似文献   

15.
A series of novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties in the side chains were prepared by combination of atom transfer radical polymerization (ATRP) and the chemical modification reaction. First, the bromine-terminated diblock copolymer poly(ethylene oxide) monomethyl ether-block-polystyrene (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macroinitiator MPEO-Br, which was obtained from the esterification of MPEO and 2-bromoisobutyryl bromide. Then, the bromo end groups of the resulting MPEO-PS-Br were derivatized into twice as many bromoisobutyrates by the chain end modification reaction to obtain ω,ω′-bis(bromo)-PS-MPEO (MPEO-PS-Br2). The azobenzene-containing blocks of poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate] (PMMAZO) with different molecular weights were introduced into the derivative diblock copolymer by a second ATRP to synthesize the novel ABC2-type liquid-crystalline block copolymers poly(ethylene oxide) monomethyl ether-block-polystyrene-block-{poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate]}2 [MPEO-PS-(PMMAZO)2].  相似文献   

16.
Pristine carbon black was oxidized with nitric acid to produce carboxyl group, and then the carboxyl group was consecutively treated with thionyl chloride and glycol to introduce hydroxyl group. The hydroxyl group on the carbon black surface was reacted with 2‐bromo‐2‐methylpropionyl bromide to anchor atom transfer radical polymerization (ATRP) initiator. The ATRP initiator on carbon black surface was verified by TGA, FTIR, EDS, and elemental analysis. Then, poly (methyl methacrylate) and polystyrene chains were respectively, grown from carbon black surface by surface‐initiated atom transfer radical polymerization (SI‐ATRP) using CuCl/2,2‐dipyridyl (bpy) as the catalyst/ligand combination at 110 °C in anisole. 1H NMR, TGA, TEM, AFM, DSC, and DLS were used to systemically characterize the polymer‐grafted carbon black nanoparticles. Dispersion experiments showed that the grafted carbon black nanoparticles had good solubilities in organic solvents such as THF, chloroform, dichloromethane, DMF, etc. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3451–3459, 2007  相似文献   

17.
Polymer brushes grafted to the surface of silica nanoparticles were fabricated by atom‐transfer radical polymerization (ATRP) and investigated as catalysts in the cleavage of phosphodiesters. The surfaces of silica nanoparticles were functionalized with an ATRP initiator. Surface‐initiated ATRP reactions, in varying proportions, of a methacrylate moiety functionalized with a phenylguanidine moiety and an inert hydrophilic methacrylate species afforded hybrid nanoparticles that were characterized with potentiometric titrations, thermogravimetric analysis, and SEM. The activity of the hybrid nanoparticles was tested in the transesterification of the RNA model compound 2‐hydroxypropyl para‐nitrophenylphosphate (HPNP) and diribonucleoside monophosphates. A high catalytic efficiency and a remarkable effective molarity, thus overcoming the effective molarities previously observed for comparable systems, indicate the existence of an effective cooperation of the guanidine/guanidinium units and a high level of preorganization in the nanostructure. The investigated system also exhibits a marked and unprecedented selectivity for the diribonucleoside sequence CpA. The results presented open up the way for a novel and straightforward strategy for the preparation of supramolecular catalysts.  相似文献   

18.
Herein we describe a new strategy for producing micelles with mixed coronal chains. This method involves attachment of an atom transfer radical polymerization (ATRP) initiator at the interface of a micelle and preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes at the interface by a "grafting from" method. Poly(ethylene glycol)- block-polystyrene (PEG- b-PS) diblock copolymer was achieved by ATRP. After the sulfonation reaction PS blocks were partly sulfonated. In aqueous solution at low pH the sulfonated block copolymer self-assembled into micelles with PS cores and PEG coronae and sodium 4-styrenesulfonate groups were distributed at the interfaces of the micelles. An ATRP initiator consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety was ion exchanged onto the interface of the micelle. ATRP of DMAEMA was initiated at the interface, and micelles with PEG/PDMAEMA mixed coronal chains were prepared by ATRP. The structures of the micelles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta potential measurements. The size and morphology of the micelles were controlled by pH in aqueous solution. At high pH, PDMAEMA brushes collapse, forming nanodomains on the surface of the micelles. PDMAEMA brushes in the coronae of the micelles could be used as a template for preparation of gold nanoparticles.  相似文献   

19.
Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.  相似文献   

20.
A method applying soap-free emulsion polymerization with an amphoteric initiator, 2,2′-azobis[N-(2-carboxyethyl)-2-2-methyl-propionamidine], is proposed for synthesis of highly monodisperse particles composed of magnetic nanoparticles (Fe3O4/γ–Fe2O3) and polystyrene. The magnetic nanoparticles were pretreated by surface modification for introducing double bonds onto the particles. In the polymerization, magnetic nanoparticles were continuously supplied to the system for a certain period after the initiation of polymerization at various pH. Dissociation degrees of ionizable groups in the initiator molecules were controlled through pH by changing NH3 concentrations at a constant NH4Cl concentration. Selection of suitable pH in the polymerization could produce polymer particles that perfectly incorporated the supplied magnetic nanoparticles. The magnetic polymer particles had a coefficient of variation of size distribution as low as 4.3% with an average diameter of 515 nm and a saturation magnetization of 7.3 emu/g-sample. Electrophoresis measurements indicated that the magnetic polymer particles had an isoelectric point of pH 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号