首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Graft copolymers of ethyl cellulose with azobenzene‐containing polymethacrylates were synthesized through atom transfer radical polymerization (ATRP). The residual hydroxyl groups on ethyl cellulose were first esterified with 2‐bromoisobutyryl bromide to yield 2‐bromoisobutyryloxy groups, which was then used to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) in the presence of CuBr/N,N,N′,N″,N″‐pentamethylenetriamine (PMDETA) as catalyst and anisole as solvent. The graft copolymers were characterized by gel permeation chromatography (GPC) and 1H‐NMR. The molecular weights of the graft copolymers increased relatively to the macroinitiator, and the polydispersities were narrow. The thermal and liquid crystalline property of the graft copolymers were investigated by differential scanning calorimeter (DSC) and polarizing optical microscope (POM). Photoresponsive property was studied under the irradiation of UV–vis light in THF solution. The graft copolymers have potential applications, including sensors and optical materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1653–1660, 2007  相似文献   

2.
3.
Syndiotactic polystyrene graft copolymers, including syndiotactic-polystyrene-graft-poly(methyl methacrylate) and syndiotactic-polystyrene-graft-atactic-polystyrene, were synthesized by atom transfer radical polymerization (ATRP) using bromoacetylated syndiotactic polystyrene as macroinitiator and copper bromide combined with 2,2′-bipyridine as catalyst. The macroinitiator was prepared from the acid-catalyzed halogenation reaction of partially acetylated syndiotactic polystyrene, which was synthesized in a heterogeneous process with acetyl chloride and anhydrous aluminum chloride in carbon disulfide. The graft copolymers were characterized by 1H- and 13C-NMR spectra.  相似文献   

4.
Syndiotactic polystyrene-graft-poly(glycidyl methacrylate) (sPS-graft-PGMA) copolymer was synthesized by a heterogenous atom transfer radical polymerization (ATRP) using 2-bromo-2-methylpropanoyl bromide modified syndiotactic polystyrene (BMPsPS) as macroinitiator and copper bromide combined with 2,2′-bipyridine as catalyst in anisole at room temperature. The macroinitiator with 7.0 mol% bromine content was prepared from Friedel-Crafts acylation reaction of sPS with 2-bromo-2-methylpropanoyl bromide in a heterogeneous process. It was found that BMsPS macroinitiator was well swelled in the mixture of anisole and GMA, the equilibrium swelling degree could reach 370%. The resultant polymer was characterized by FTIR and NMR spectroscopies. In addition, the thermal properties of the graft copolymers were also investigated with differential scanning calorimetry (DSC).  相似文献   

5.
Copper(I)-mediated living radical polymerization was used to synthesize a series of self-crosslinkable ABA triblock copolymers in which the side blocks are formed by a monomer supporting a reactive functional group, as allyl methacrylate (AMA). The copolymers were prepared according with a two steps synthetic methodology. In the first step, ,ω-dibromo homopolymers of polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA) were synthesized by atom transfer radical polymerization (ATRP). In the second step, these telechelic polymers were employed as macroinitiators for the ATRP of AMA in benzonitrile solution at 70 °C with CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system in order to obtain well-defined functionalized triblock copolymers. The living nature of the block copolymerizations involved was investigated in each case and a similar general behaviour was found. Thus, the molecular weights increased fairly linearly with the conversion degree with first-order kinetics in respect of monomer until moderate conversions, where secondary reactions become more relevant. Finally, intermacromolecular crosslinking were observed giving macrogels as a unique reaction product. The polymers were characterized by different characterization techniques, such as size exclusion chromatography (SEC), 1H NMR spectroscopy and differential scanning calorimetry (DSC). In addition, the facile thermal crosslinking of these block copolymers was evaluated from rheological measurements.  相似文献   

6.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

7.
《European Polymer Journal》2002,38(4):759-769
Atom transfer radical polymerization was employed for the first time to prepare graft copolymer having by ethylene-vinyl acetate (EVA) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches. The polymerization of MMA was initiated by EVA carrying chloropropionate groups as macroinitiator, in the presence of copper chloride (CuCl) and bipyridine (bpy) at 80 °C. The macroinitiator was prepared by esterification of partially hydrolyzed EVA with 2-chloropropionyl chloride. Successful graft copolymerizations were performed both in toluene/γ-butyrolactone mixed solvent and in toluene solution, with grafting efficiency of 12% and 6%, respectively. Molecular weight distribution of the PMMA segments around 1.2 has been achieved with pure toluene solution. The ATRP graft copolymerization was supported by an increase of the molecular weight of the graft copolymers, as compared to that of the macroinitiator and also by their monomodal molecular weight distribution.  相似文献   

8.
This contribution describes a method to prepare high-capacity anion-exchange membranes for chromatographic bioseparations. Surface-initiated atom transfer radical polymerization was used to graft poly(2-dimethylaminoethyl methacrylate) (poly(DMAEMA)) nanolayers from the pore surfaces of commercially available regenerated cellulose membranes. Initial measurements were made to determine the thickness evolution of the poly(DMAEMA) nanolayers, using a model flat substrate designed to mimic the three-dimensional nature of initiator incorporation into the membrane. Thereafter, polymerization time was used as the independent variable to control the mass of polymer grafted from the membrane surfaces and, thus, the protein binding capacity. ATR-FTIR, AFM, and SEM were used to characterize changes in the chemical functionality, surface topography, and pore morphology of membranes as a result of modification. Bovine serum albumin was used to evaluate the static protein binding capacity of poly(DMAEMA)-modified membranes. Maximum static binding capacities increased with increasing polymerization time in a linear fashion for short polymerization times (<6 h). For longer polymerization times, capacity increased non-linearly, eventually reaching a plateau value of 66.3 mg/mL.  相似文献   

9.
Poly(methacrylic acid) (PMAA) oligomers were synthesized by combining template polymerization and copper‐mediated atom transfer polymerization with multivinyl monomer of β‐cyclodextrin (CD) having 20.4 methacryloyl groups on both primary and secondary hydroxyl group sides of CD scaffold, with 1,3‐dibromobutane as an initiator. The initiation and propagation sites of polymerized sequence of β‐CD were connected by postpolymerization of polymerized products with CuBr and tris[(2‐dimethylamino)ethyl]amine (Me6TREN) in a methanol/water mixture of 10 wt % of water. Polymerized and cyclized sequences, PMAA oligomers formed on the primary and the secondary hydroxyl group sides, were detached from β‐CD scaffold by hydrolysis. Molecular weights of PMAA oligomers were measured by GPC and matrix assisted laser desorption ionization time‐of‐flight mass measurement. By 1H NMR measurements, it was found that three types of cyclic PMAA were obtained by postpolymerization. The cyclization preferentially occurred on the secondary hydroxyl group side than on the primary hydroxyl group side. From the structures of cyclic PMAA, two reaction positions were proposed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6262–6271, 2005  相似文献   

10.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

11.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

12.
The synthesis of new stimulus-responsive block copolymer gelators using atom transfer radical polymerisation (ATRP) in either methanol or 2-propanol/water mixtures at 20 °C is described. Bifunctional and trifunctional initiators were used to prepare ABA triblock and I(BA)3 three-arm star diblock copolymers, respectively, using a ‘one-pot’ ATRP protocol, in which the central block comprised poly(glycerol monomethacrylate) and the outer blocks comprised pH-responsive poly[2-(diethylamino)ethyl methacrylate] or poly[2-(diisopropylamino)ethyl methacrylate]. These copolymers dissolve molecularly in acidic solution but formed free-standing gels at around neutral pH on addition of base. Gel strength was judged by both tube inversion experiments and shear rheometry measurements and a comparison between the linear and star architectures was made.  相似文献   

13.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

14.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

15.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

16.
Two sets of styrene‐based semifluorinated block copolymers, one with a perfluoroether pendant group and another with a perfluoroalkyl group, were synthesized by atom transfer radical polymerization. Microphase separation of the block copolymers was established by small‐angle X‐ray scattering and differential scanning calorimetry (DSC). DSC measurements also showed that the perfluoroether‐based polymer had a low glass‐transition temperature (?44 °C). Contact‐angle measurements indicated that the semifluorinated block copolymers had low surface energies (ca. 13 mJ/m2). These materials hold promise as low‐surface‐energy additives or surfactants for supercritical CO2 applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 853–861, 2004  相似文献   

17.
A detailed investigation of the polymerization of allyl methacrylate, a typical unsymmetrical divinyl compound containing two types of vinyl groups, methacryloyl and allyl, with quite different reactivities, was performed with atom transfer radical polymerization (ATRP). Homopolymerizations were carried out in bulk, with ethyl‐2‐bromoisobutyrate as the initiator and with copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic studies demonstrated that during the early stages of the polymerization, the ATRP process proceeded in a living manner with a low and constant radical concentration. However, as the reaction continued, the increased diffusion resistance restricted the mobility of the catalyst system and interrupted the equilibrium between the growing radicals and dormant species. The obtained poly(allyl methacrylate)s (PAMAs) were characterized with Fourier transform infrared, 1H NMR, and size exclusion chromatography techniques. The dependence of both the gel point conversion and molecular characteristics of the PAMA prepolymers on different experimental parameters, such as the initiator concentration, polymerization temperature, and type of halide used as the catalyst, was analyzed. These real gel points were compared with the ones calculated according to Gordon's equation under the tentative assumption of equal reactivity for the two types of vinyl groups. Moreover, the microstructure of the prepolymers was the same as that exhibited by those homopolymers prepared by conventional free‐radical polymerization; the fraction of syndiotactic arrangements increased as the reaction temperature was lowered. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2395–2406, 2005  相似文献   

18.
A novel multidentate amine grafted on silica gel and magnetic microsphere was prepared. Its chemical structure was confirmed by C13 NMR, XPS and FTIR, and the nitrogen content was determined by elemental analysis. It was also used as a ligand for CuCl and successfully catalyzed the atom transfer radical addition of both carbon tetrachloride (CCl4) to methyl methacrylate and methyl trichloroacetate to styrene, repeatedly. The conversion and purity of the product were determined through gas chromatography and 1H NMR, respectively. The immobilized copper catalyst complex was also used in atom transfer radical polymerization of styrene initiated by 1,1,1,3‐tetrachloro‐3‐phenylpropane and methyl methacrylate initiated by methyl 2‐methyl‐2,4,4,4‐tetrachlorobutyrate, respectively. Although the polymerization took place successfully, it did not proceed in a controlled fashion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Controlled polymerization of (meth)acrylamides was achieved by ATRP using the initiating system methyl 2‐chloropropionate/CuCl/tris(2‐dimethylaminoethyl)amine. Linear increase of molecular weights with conversion and low polydispersity (Mw/Mn < 1.2) were obtained in toluene, at room temperature, when N,N‐dimethylacrylamide was used as a monomer. However, the polymerization reached limited conversion, which could be enhanced by increasing the catalyst/initiator ratio. The limited conversion is not due to the loss of the active chains, but rather to the loss of activity of the catalytic system.  相似文献   

20.
Efficient antibacterial surfactants have been prepared by the quaternization of the amino groups of poly(ethylene‐co‐butylene)‐b‐poly[2‐(dimethylamino)ethylmethacrylate] (PEB‐b‐PDMAEMA) diblock copolymers by octyl bromide. The diblock copolymers have been synthesized by ATRP of 2‐(dimethylamino)ethylmethacrylate (DMAEMA) initiated by an activated bromide‐end‐capped poly(ethylene‐co‐butylene). In the presence of CuBr, 1,4,7,10,10‐hexamethyl‐triethylenetetramine (HMTETA), and toluene at 50 °C, the initiation is slow in comparison with propagation. This situation has been improved by the substitution of CuCl for CuBr, all the other conditions being the same. Finally, the addition of an excess of CuCl2 (deactivator) to the CuCl/HMTETA catalyst is very beneficial in making the agreement between the theoretical and experimental number‐average molecular weights excellent. The antibacterial activity of PEB‐b‐PDMAEMA quaternized by octyl bromide has been assessed against bacteria and is comparable to the activity of a commonly used disinfectant, that is, benzalkonium chloride. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1214‐1224, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号