首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UV irradiation effects on stability of polystyrene, poly(4-methoxystyrene), poly(4-methylstyrene), poly(α-methylstyrene), poly(4-tert-butylstyrene), poly(4-chlorostyrene), and poly(4-bromostyrene) in dichloromethane, dichloromethane, tetrahydrofuran, and N,N-dimethylformamide solutions were studied in the presence of oxygen at different intervals of irradiation time. The photodegradation was studied at 293 K using fluorescence spectroscopy. Solutions of these polymers were accompanied by quenching of monomer and excimer emissions during the exposure of their solutions to UV light, and by a change in the structure of the fluorescence spectrum. Irradiation of poly(4-methylstyrene) and poly(α-methylstyrene) at excitation wavelength of 265 nm showed an increase of fluorescence intensity of a broad band, at longer wavelength without clear maxima. This may indicate that photodestruction of these polymers by irradiation with light of frequency absorbed by the polymer, may start from a random chain scission, with the possibility of formation of polyene and carbonyl compounds.  相似文献   

2.
This paper discusses the poly(ethylene-co-p-methylstyrene) copolymers prepared by metallocene catalysts, such as Et(Ind)2ZrCl2 and [C5Me4(SiMe2NtBu)]-TiCl2, with constrained ligand geometry. The copolymerization reaction was examined by comonomer reactivity (reactivity ratio and comonomer conversion versus time), copolymer microstructure (DSC and 13C-NMR analyses) and the comparisons between p-methylstyrene and other styrene-derivatives (styrene, o-methylstyrene and m-methylstyrene). The combined experimental results clearly show that p-methylstyrene performs distinctively better than styrene and its derivatives, due to the cationic coordination mechanism and spatially opened catalytic site in metallocene catalysts with constrained ligand geometry. A broad composition range of random poly(ethylene-co-p-methylstyrene)copolymers were prepared with narrow molecular weight and composition distributions. With the increase of p-methylstyrene concentration, poly(ethylene-co-p-ethylstyrene)copolymer shows systematical decrease of melting point and crystallinity and increase of glass transition temperature. At above 10 mol % of p-methylstyrene, the crystallinity of copolymer almost completely disappears. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1017–1029, 1998  相似文献   

3.
Poly(1-dodecene-co-para-methylstyrene) copolymers with a broad composition range were prepared by an MgCl2 supported TiCl4 catalyst. The effects of temperature and hydrogen on catalyst activity were investigated. It was found that catalyst activity reached a maximum at around 60 °C, and then decreased with the rising temperature. Hydrogen showed an activation effect on the Ziegler-Natta catalyst. 1H NMR and 13C NMR spectra showed that para-methylstyrene (pMS) could be effectively and randomly incorporated into the copolymer chains. The single glass transition indicated there was no block sequence in the copolymer. The copolymerization reaction was examined by the reactivity ratios of comonomers and the relatively low reactivity ratios of 1-dodecene and pMS indicated that both of them had little tendency of consecutive insertion and should be homogeneously distributed in the copolymer chains. Furthermore, the molecular weights of copolymers were regulated by chain transfer agents (diethyl zinc and hydrogen) and temperature. The molecular weights reduced greatly with the addition of diethyl zinc and hydrogen and with the increasing temperature.  相似文献   

4.
Styrene (M1) has been copolymerized with o-, m- and p-methyl-styrenes and p-methoxystyrene (M2) at temperatures between 40 and 110°, using azoisobutyronitrile as initiator; the substituted styrenes were labelled with 14C in the β-position. The compositions of the copolymers were determined by liquid scintillation counting. Since [M1] ? [M2], a simplified form of the copolymer composition equation was used to determine reactivity ratios r1. Arrhenius parameters of r1 were found; they show that polar effects predominate when p-methoxystyrene copolymerizes whereas steric effects predominate for o-methylstyrene. Both polar and steric effects are very small for m-methylstyrene; for p-methoxystyrene, the predominance of polar and steric effects varies with the temperature. Values of (E11 ? E12) show good correlation with Hammett substituent constants.  相似文献   

5.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

6.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

7.
Comb copolymers consisting of polystyrene backbone and poly(tert-butyl (meth)acrylate) side chains were synthesized by combination of nitroxide (TEMPO)-mediated polymerization (NMP) and photoinduced grafting from macro-iniferters. First, poly(chloromethylstyrene), PCMS, with the degree of polymerization and two random poly(styrene-co-chloromethylstyrene) copolymers, P(S-co-CMS), with similar but different content (8 and 14 mol%) of CMS units, were synthesized by NMP. In the second step the CMS units both in the homopolymer and the copolymers were converted to N,N-diethyldithiocarbamyl groups (DC) yielding photosensitive multifunctional macro-iniferters. Finally, tert-butyl methacrylate tBuMA was grafted from the synthesized polymer backbones by iniferter technique under UV-irradiation yielding copolymers polystyrene-graft-poly(tert-butyl methacrylate) PS-g-P(tBuMA). Grafting initiated by the macro-iniferters containing ∼6-11 DC initiating sites per macromolecule proceeded by pseudo-living polymerization mechanism, i.e., the number-average molecular weight increased with conversion and the SEC traces were unimodal. In contrast, photo-polymerization initiated by highly functionalized polystyrene backbone was poorly controlled. Hydrolysis of loosely grafted copolymers PS-g-P(tBuMA) afforded amphiphilic copolymers polystyrene-graft-poly(methacrylic acid). Molecular parameters of the synthesized graft copolymers in dilute THF solutions were determined by scattering (DLS, SLS, SAXS) and viscometric measurements.  相似文献   

8.
In this article, we discuss a new chemical route for preparing polypropylene (PP) graft copolymers containing a PP backbone and several (polar and nonpolar) polymer side chains, including polybutadiene, polystyrene, poly(p-methylstyrene), poly(methyl methacrylate), and polyacrylonitrile. The new PP graft copolymers had a controlled molecular structure and a known PP molecular weight, graft density, graft length, and narrow molecular weight distribution of the side chains. The chemistry involves an intermediate poly(propylene-co-p-methylstyrene) copolymer containing few p-methylstyrene (p-MS) units. The methyl group in a p-MS unit could be lithiated selectively by alkylithium to form a stable benzylic anion. Because of the insolubility of the PP copolymer at room temperature, the excess alkylithium could be removed completely from the lithiated polymer. By the addition of the anionically polymerizable monomers, including polar and nonpolar monomers, the stable benzylic anions in PP initiated a living anionic graft-from polymerization at ambient temperature to produce PP graft copolymers without any significant side reactions. The side-chain length was basically proportional to the reaction time and monomer concentration. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4176–4183, 1999  相似文献   

9.
Summary: The reactivity ratios r1 and r2 in copolymerizations of styrene and parasubstituted styrenes, for which r1 = 1/r2, are in contradiction with diffusion control for their propagation reactions. The cross propagation rate constants k12copol in copolymerization of styrene with p-chlorostyrene, p-methylstyrene and p-methoxystyrene have been shown to increase with their nucleophilicity parameter N. This is also not compatible with diffusion controlled cross propagation and propagation, but agrees with similar rate constants of propagation for these monomers. The capping rate constants k12capp of reactions of poly(p-methylstyrene)± and poly(p-methoxystyrene)± with π-nucleophiles also increase with N, but with a much larger selectivity. This shows that k12copol and k12capp are not identical. The k, from 109 to 6 109 L mol−1 s−1, obtained with p-chlorostyrene, styrene and p-methylstyrene by the Diffusion Clock (DC) method are not consistent with those derived from the ionic species concentration (ISC method) for indene, 2,4,6-trimethylstyrene and p-methoxystyrene of the order of 104 – 105 L mol−1 s−1, also measured for living polymerization. These last values are in agreement with those measured previously in nonliving systems, and with an approximate compensation between the reactivity of a monomer and that of the corresponding carbocation.  相似文献   

10.
Three new copolymers containing poly(p-phenylenevinylene) (PPV) and triphenylamine (TPA) moieties carrying N-(n-butyl)-N′-ethoxy-1,6,7,12-tetra-(4-tert-butylphenoxy)-3,4,9,10-perylenetetracarboxylic bisimide (PERY) pendant groups were successfully synthesized by Wittig condensation. The molar percentage of perylene pendants in copolymers was controlled by tuning the initial feed ratio of the perylene-bisaldehyde monomer. The structures and properties of three copolymers were characterized and evaluated by FT-IR, NMR, UV, FL, and photovoltaic analyses. The copolymers were highly soluble in conventional solvents such as toluene, CHCl3, THF, DMF, etc., and they were thermally stable (?396 °C). Three copolymers have emission spectra with characteristic features of the perylene unit, however, and their luminescence are largely quenched with the increasing amount of PERY units in copolymers. The photophysical study in solution has shown that singlet-singlet energy transfers from PPV backbone to perylene in the copolymers. The photovoltaic devices ITO/PEDOT:PSS/copolymers/Ba/Al were fabricated, and the energy conversion efficiency of the device is only about 0.0005%, further indicating that an efficient energy transfer has taken place from PPV to perylene in the copolymers.  相似文献   

11.
A copolymer, poly(aniline-co-m-aminophenol), was synthesized by copolymerization of aniline and m-aminophenol in the presence of l-glutamic acid (l-Glu) as template molecules. The copolymer was filled into a porous ceramic column as the conductive stationary phase. Enantioselective recognition of Glu enantiomers was achieved on this special electrode column by applying different potentials on copolymers in the ceramic column. l-Glu anions were ejected from the ceramic column after electrochemical reduction due to the reversible redox of the copolymer while complementary cavities were left. Then a positive potential was applied to the molecularly imprinted poly(aniline-co-m-aminophenol) for re-binging Glu enantiomers in the mobile phase. The results showed good enantioselectivity.  相似文献   

12.
Heat capacities were measured for poly(4-methylstyrene) [300–500K], poly(4-fluorostyrene) [130–350K], poly(4-chlorostyrene) [300–550K], poly(4-bromostyrene) [300–550K], poly(4-iodostyrene) [300–550K] and poly(styrene-co-divinylbenzene) with 1, 2, 4, 8, and 12 wt.% divinylbenzene (technical grade) [300–550K]. Polystyrene and poly(α-methylstyrene) data were found to match the ATHAS data bank collections. Crosslinking causes no significant change in heat capacity, but substitution does. The heat capacities in the solid state are evaluated using approximate group and skeletal vibration spectra. Glass transitions are discussed, and full thermodynamic functions (Cp, H, S, G) can be calculated for amorphous, crystalline, and deuterated polystyrene as well as poly(α-methylstyrene). Glassy polystyrene has an entropy of 7.5 J K?1 mol?1 at absolute zero. Changes of the heat capacity at the glass transition are explained and are predicted to go to zero for 50% poly(styrene-co-divinylbenzene) at about 550K.  相似文献   

13.
Multilayered systems of poly(3,4-ethylendioxythiophene) and poly(N-methylpyrrole) have been prepared using a layer-by-layer electrodeposition technique. The electrochemical and electrical properties of films formed by 3, 5, 7 and 9 layers have been characterized and compared with those of pure polymers and copolymers prepared from mixtures of 3,4-ethylendioxythiophene and N-methylpyrrole with various concentration ratios. Results indicate that the electroactivity and electrical stability of the multilayered systems are higher than those of both poly(3,4-ethylendioxythiophene) and copolymers. Furthermore, these electrochemical properties improve when the number of layers increases. On the other hand, the electrical conductivity of the multilayered systems is slightly lower than that of pure poly(3,4-ethylendioxythiophene), and significantly higher than those of poly(N-methylpyrrole) and copolymers.  相似文献   

14.
The geometry of N,N′-diphenyl-p-phenylenediamine (DPPD), N-phenyl-N′-(1′-methylbenzyl)-p-phenylenediamine (SPPD), N-phenyl-N′-(1,3-dimethyl-butyl)-p-phenylenediamine (6PPD), N-phenyl-N′-isopropyl-p-phenylenediamine (IPPD), and N-(1-methyl-1-phenylethyl)-N′-phenyl-p-phenylenediamine (CPPD) as well as of their dehydrogenation products has been optimized at B3LYP/6-31G level of theory. Our results support the idea of formation of stable ketimine Ph-NC structures (instead of quinonediimine structures) during consecutive dehydrogenation of SPPD, 6PPD, and IPPD antioxidants despite the formation of tertiary carbon-centered radicals in the first dehydrogenation step is energetically preferred for SPPD only.  相似文献   

15.
Highly reactive 4-substituted-1,2,4-triazoline-3,5-diones (TDs) have been studied extensively as dienophiles, but little work has been done on their role as enophiles and particularly on their use as propagating species in polymerization studies. The copolymerization between bis-4-substituted-1,2,4-triazoline-3,5-diones (bis-TDs) and styrene has been reported. The purpose of the present work was to synthesize new copolymers derived from a variety of substituted styrenes and bis-TDs and to study the mechanism and kinetics of this novel polymerization. Three bis-TDs were prepared: 3,3′-dimethyl-4,4′-bis[3,5-dioxo-1,2,4-triazoline-4-yl] biphenyl (8), t-1,4-bis[3,5-dioxo-1,2,4-triazoline-4-yl] methyl cyclohexane (9), and 4,4′-bis[3,5-dioxo-1,2,4-triazoline-4-yl] phenyl ether (10). Their structures were fully established by spectroscopic studies, elemental analyses, and indirectly, their quantitative ene reactions with 2,3-dimethyl-2-butene. Copolymerization between bis-TDs and substituted styrenes was carried out in dimethylformamide (DMF), tetrahydrofuran (THF), or dichloroethane (DCE). Polymers formed were characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and viscometry. Molecular weights of polymers range from 5000 to 16,000 in most cases. They were stable up to 250°C and higher. Polymers derived from bis-TDs and p-t-butylstyrene, α-methylstyrene, p-nitrostyrene, and p-acetoxystyrene contained only Diels-Alder-ene (DAe) repeating units, whereas those derived from styrene, p-chlorostyrene, p-bromostyrene, p-methylstyrene, p-methoxystyrene, and 4-vinylbiphenyl contained both DAe and double Diels-Alder (dDA) repeating units. A kinetic study of the copolymerization of 4,4′-bis-(3,5-dioxo-1,2,4-triazoline-4-yl) phenyl ether with α-methylstyrene, p-t-butylstyrene, styrene, p-chlorostyrene, and p-nitrostyrene in DCE was carried out; the copolymerization rate constants were 60.9, 49.8, 8.4, 5.5, and 0.8 (1 mol?1s), respectively.  相似文献   

16.
Radical-initiated copolymerization of N-isopropylacrylamide (NIPA) with maleic (MA) and citraconic (CA) anhydrides was carried out in the presence of 2,2-azobisisobutyronitrile (AIBN) as an initiator in 1,4-dioxane at 65 °C under nitrogen atmosphere. Structure and monomer unit compositon of the copolymers obtained from a wide range of monomer feed were determined by elemental analysis (content of N for NIPA units), Fourier transform infrared and 1H NMR spectroscopy. Monomer reactivity ratios for NIPA (M1)-MA (M2) and NIPA (M1)-CA (M2) pairs were determined by Kelen-Tüdõs (KT) and non-linear regression (NLR) methods using elemental and 1H NMR spectroscopy analyses data. They are r1=0.45 and r2=0.08 (KT, N analysis), r1=0.44 and r2=0.10 (KT, 1H NMR), r1=0.45 and r2=0.078 (NLR) for NIPA-MA monomer pair and r1=0.52 and r2=0.02, r1=0.44 and r2=0.04, r1=0.51 and r2=0.014 for NIPA-CA monomer pair, respectively. Observed tendency towards alternating copolymerization at ?50 mol% NIPA concentration in monomer feed and relatively high activity of NIPA growing radical was explained by H-bond formation between CO (anhydride) and NH (amide) fragments during chain growth reactions. Intrinsic viscosity, molecular weight and thermal behaviour of the synthesized copolymers were found to depend on the type of comonomer and the amount of NIPA units in the copolymers. These functional amphiphilic copolymers containing anion- and cation-active groups show both temperature and pH sensitivity and can be used for biological purposes as physiologically active macromolecular systems.  相似文献   

17.
Block and graft copolymers with poly(N-isopropylacrylamide) and poly[(N-acetylimino)ethylene] (PNAI) sequences were synthesized via PNAI derivatives (macroinitiators or macromers). The polymerization yields for block copolymers synthesized in ethanol, using the PNAI macroinitiator, were low (<10%), except where photochemical polymerization was applied. By contrast, for the copolymerizations of N-isopropylacrylamide with the PNAI macromers, performed in alcoholic solution, quite high polymerization yields, around 80-90%, were reached. 1H-NMR and IR spectral and differential scanning calorimeter thermal data confirmed the copolymer formation. Thermosensitivity of the copolymers was investigated by means of turbidimetric technique as a function of their nature, average molecular weight and composition. It was found that the length of the chain of the PNAI macromer and the content in hydrophilic PNAI units of the resulted copolymer affected this behavior.  相似文献   

18.
Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core–shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N′-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4–5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core–shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism – Japanese medaka, Oryzia latipes – in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging.  相似文献   

19.
Poly(N-isopropylacrylamide) (PNIPAAm) copolymers were synthesized in order to obtain co-polymers with a phase transition temperature slightly higher than the physiological temperature, as required by a new drug delivery concept described in a previous paper. Six hydrophilic comonomers bringing about a rise of the phase transition temperature were evaluated. The synthesized copolymers were characterized and the influence of the type and of the amount of the used comonomer on the phase transition temperature was discussed. Among the comonomers, Acrylamide (AAm), N-methyl-N-vinylacetamide (MVA), N-vinylacetamide (NVA), and N-vinyl-2-pyrrolidinone (VPL) were found to be capable to raise the phase transition temperature to a value slightly higher than 37 °C and to have adequate phase transition behavior. The selected four copolymers were subjected to an additional purification step that should make them fit to use as a controlling agent in drug delivery systems.  相似文献   

20.
The synthesis, characterization, and degradability of the novel aliphatic polyester bearing pendant N-isopropylamide functional group are reported for the first time. 2-(N-Isopropyl-2-carbamoylethyl)cyclohexanone (CCH) was first synthesized by the Michael reaction of N-isopropylacrylamide with cyclohexanone and was subsequently converted into 6-(N-isopropyl-2-carbamoylethyl)-?-caprolactone (CCL) by the Baeyer-Villiger oxidation reaction using 3-chloroperoxybenzoic acid (mCPBA) as the oxidant. Finally, the novel functionalized poly(?-caprolactone) bearing the pendant N-isopropylamide functional groups, poly(6-(N-isopropyl-2-carbamoylethyl)-?-caprolactone-co-?-caprolactone)s (poly(CCL-co-CL)), were carried out successfully by bulk ring-opening polymerization of CCL and ?-CL initiated by Sn(Oct)2. Poly(CCL-co-CL) were characterized by 1H NMR, 13C NMR, SEC and DSC. The copolymer containing 9.1 mol% CCL formed flexible films and was used to study its degradability. A phosphate buffer (pH = 7.4) with temperature 37 °C was adopted to proceed the degrading study all through. Compared with poly(?-caprolactone), the hydrolytic degradation of poly(CCL-co-CL) was much faster, which is confirmed by the weight loss and change of intrinsic viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号