首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
一种数码相机定焦镜头的光学系统设计   总被引:2,自引:1,他引:1  
为适应市场上对结构简洁、成像品质高且生产成本低的数码相机镜头的需要,运用光学设计软件CODE V,在传统数码相机定焦镜头的基础上,结合非球面塑料透镜理论,模拟出了生产成本较低的三片式数码相机定焦镜头。该数码相机镜头结构的特点是:模块仅包括3块透镜;选择塑料镜头代替玻璃/塑料混合镜头或者全玻璃镜头,降低了系统的生产成本;系统的后焦距增大到0.8116mm,能够确保良好的远心光路性能;透镜表面完全采用非球面设计,较好地校正了球差等各种像差,使透镜具有良好的光学成像性能。  相似文献   

2.
一款超薄非球面手机镜头设计   总被引:1,自引:0,他引:1  
为满足市场对超薄手机镜头的需求,运用光学设计软件ZEMAX,参考传统三片式结构,设计了一款新的超薄非球面塑料手机镜头,其中第一片镜片是正透镜,第二片镜片是负透镜,第三片镜片也是负透镜,且光阑位于第一片透镜和第二片透镜之间。这3片透镜的材质分别为APL5014DO、POLYSTYR、ARTON-D4531,折射率和阿贝系数分别为1.542130,56.833340,1.590481和30.866877,1.514612,57.200025。该镜头的光圈值F为2.4,视场为58°,镜头总长为2.19mm。在295lp/mm处MTF值都大于0.2,点列图能量集中,各视场都在airy限制内。  相似文献   

3.
周海宪 《应用光学》2006,27(4):I0007-I0007
内容简介:本书是一部首次系统、完整地介绍全息光学元件的成像理论、制造方法和广泛应用的专著。全书由“绪论”和十二章内容组成,分为四部分:第一部分叙述全息光学元件成像的基本原理,近轴成像理论,光线追迹的概念和必要的坐标变换。第二部分介绍全息光学系统的具体设计方法,像差理论及其补偿方法,  相似文献   

4.
周海宪 《应用光学》2006,27(3):I0007-I0007
内容简介:本书是一部首次系统、完整地介绍全息光学元件的成像理论、制造方法和广泛应用的专著。全书由“绪论”和十二章内容组成,分为四部分:第一部分叙述全息光学元件成像的基本原理,近轴成像理论,光线追迹的概念和必要的坐标变换。第二部分介绍全息光学系统的具体设计方法,像差理论及其补偿方法,  相似文献   

5.
变焦距镜头     
Tomow.  T 刘肖民 《应用光学》1992,13(1):20-29,4
变焦距镜头由变倍系统和中继透镜系统构成。从物方算起,变倍系统由三个组份组成:第一组份为具有正光焦度的聚焦组;第二组份为具有负光焦度的变倍组,它可沿光轴运动使系统的焦距发生变化;第三组份为具有负光焦度的补偿组,它使随变倍组运动而移动的像面保持在预定的位置上。中继透镜系统由前、后两部分构成,即具有正光焦度的第四组份和第五组份。第四组份有三个正透镜组元,其中至少中间组元是一胶合透镜,其胶合面凸向像方。第五组份有一正胶合透镜,其胶合面凸向物方。  相似文献   

6.
杨博  付奎生  刘亚斌 《应用声学》2015,23(8):2617-2621
成像光机部件采用了许多全新的技术,研发测控系统以考核、测量与评估其各项性能指标也是重要课题,加之传统测控系统多是各型号自成一套,不能通用,在这种需求下,研发了具有系统化和通用化的测控平台;该测控平台按照通用化的设计思想,硬件部分设计了通用调理适配单元,对光机部件输出的信号进行统一调理适配,使信号具备标准的电气接口和物理接口,从而与通用集成板卡相连进行数据采集;软件部分设计了底层、逻辑层、表现层的层次结构,对于不同产品仅对表现层进行重新搭建而不需要修改底层和逻辑层;系统在实际应用中,图像和数据采集稳定,采样速率和精度高,实时性好,测控软件层次明确,数据吞吐量大,功能和性能满足多型光机部件的测控要求;该测控平台解决了成像光机部件的测试评估问题和测控系统的通用化问题,具有通用性和可扩展性强的特点。  相似文献   

7.
提出了一种采用液体透镜(LTL)补偿人眼屈光度变化的新型眼底相机光学系统,应用高斯括号法推导了液体透镜光焦度与人眼屈光度的函数关系式,计算并搭建了包含人眼模型的眼底相机近轴光学系统。在优化过程中控制人眼瞳孔位置与液体透镜共轭并保证位于它们之间的光学系统放大率接近1,使成像光束能够通过液体透镜;光源与角膜共轭,采用环形光源结合偏振光照明,并在探测器前加入检偏器降低系统杂光。设计并研制了视场角为50°、物方工作距为40mm、总长小于220mm的便携式眼底相机光学系统,拍摄了不同屈光度状态下的模型眼在采用液体透镜和不采用液体透镜补偿的眼底图片,结果表明:通过液体透镜的电控变焦能对-10D~+10D(1D=1m-1)的人眼清晰成像。该系统结构紧凑、无机械运动部件,大幅降低了光机系统的复杂程度。  相似文献   

8.
轻小型星敏感器光学系统的设计   总被引:7,自引:3,他引:4  
吴峰  沈为民 《光子学报》2004,33(11):1336-1338
介绍了星敏感器的工作原理,对光学系统的指标进行详细的分析,给出光学系统的设计结果和评价.设计得到的镜头焦距22.7 mm,相对孔径1:1.4,视场角17.1°×17.1°(圆视场角24°),而长度仅45.3 mm.由七个球面透镜组成,光阑放在第二、三透镜之间.  相似文献   

9.
基于全景环形透镜的成像技术是全景成像中的一种最具潜力的成像方式,具有高分辨率的长焦距全景环形透镜成像系统光学结构较复杂,结构设计是首要解决的问题.本文根据全景环形透镜成像系统的光路结构及成像特性,详细讨论了全景环形透镜和转像透镜组两部分的设计方法,分别设计了单块全景环形透镜和复杂化全景环形透镜,并对它们的像差特性做了对比,分析了它们之间的光路衔接条件和像差补偿方案.该设计采用小尺寸CCD离轴扫描接收环形像,同时分析了这种扫描机构的可行性.系统要求在300m处需分辨250mm大小的物体,通过计算合理地选择了系统焦距和CCD型号并制定了一套技术指标.最终设计出了焦距8mm,F/#3.2,侧向视场40°~100°的高分辨全景环形透镜成像系统,系统由三胶合结构的全景环形透镜和8片6组的转像透镜组构成,所有表面均为球面.该系统全视场的调制传递函数在80lp/mm处均高于0.5,最大视场像面的相对照度高于0.95,全视场f-θ畸变在±3%以内,该设计很好地满足了使用要求.  相似文献   

10.
发射透镜直接准直半导体激光光源方案能够使线扫描激光雷达结构更紧凑、成本更低,但是由于高功率半导体激光光源发热严重会导致光学元件热变形,从而导致探测器接收到的光功率急剧降低而不可探测。提出了一种30m探测距离的线扫描激光雷达光路的光机热集成优化设计方法。以预设工作温度40℃至80℃的中间温度60℃为初始条件,基于Zemax软件优化设计了发射透镜与接收透镜的光路系统,使工作温度为60℃时的光路系统光学性能最佳;使用有限元方法分析该光路与相应的机械结构随温度变化时光学元件热形变的情况,通过添加SiO2气凝胶作为隔热材料进行光路系统的机械结构优化。优化结果表明,采用光机热集成优化设计方法后,优化后的光路与机械结构在工作温度40℃至80℃范围内探测器接收到的光功率始终在10^-4w量级,相比仅仅使用Zemax软件优化设计发射透镜与接收透镜方法(探测器接收到的光功率10^-6~10^-4w)有了显著的提升。  相似文献   

11.
三视场红外搜索光学系统的设计   总被引:1,自引:0,他引:1       下载免费PDF全文
设计一款实际工程应用的红外三视场光学系统,其中大中视场利用透镜组切换变倍,小视场和大视场利用反射镜切换变倍。设计中采用二次成像的方式,3个视场共用二次成像透镜组,保证100%冷屏效率,减小第1片透镜的过口径。同时,采用非球面技术校正系统的球差和彗差,通过光学设计软件CODE V仿真,得出最大的点列斑为11 m左右,并且MTF接近衍射极限,成像质量完全满足使用要求。最后,该系统利用反射镜折叠光路实现了系统结构紧凑、体积小的特点。  相似文献   

12.
利用Zemax软件为线形离子阱囚禁199 Hg+实验设计了一套光学系统,该系统包括两部分,即光学激发系统和荧光收集系统。光学激发系统由202 H g无极谱灯和激发透镜组组成。激发透镜组将202 Hg无极谱灯的直径为15 mm的圆形面光源整形成23 mm ×4 mm的矩形光去激发199 H g+能级跃迁,从而使其辐射出荧光,再利用荧光收集系统去收集该荧光。荧光收集系统由收集透镜组、滤波片和光电倍增管组成。设计结果表明:该收集透镜组可以很好地将荧光发光面成像在直径为23 m m的光电倍增管上,具有较高的荧光收集效率,约3%。经物理系统实验,结果表明,该光学系统满足实验要求且具有较高的信噪比,其值约为20。这为高性能线形199 H g+微波频标的工程应用提供了基础。  相似文献   

13.
针对小型无人机载大视场光学成像观测需求,设计了一款仿生复眼大视场微小型相机.该相机光学系统总焦距为4mm,F数为4,视场角可达106°,在500m的飞行高度分辨率可达0.5m.所设计系统由曲面排布的微透镜阵列、光学像面变换子系统、图像接收和数据采集处理单元三部分组成.仿生复眼中的子透镜采用双胶合透镜组合以减小系统像差,相邻子透镜在满足视场一定重叠率的前提下,可允许相邻多达7个子透镜同时对地面目标进行成像,达到目标定位和测速的目的.仿真结果表明无人机载大视场复眼相机系统在给定的公差范围内像质满足要求,每个通道的光学畸变可控制在1.2%以下.  相似文献   

14.
吴华君  吴云峰  赵新才 《应用光学》2011,32(6):1087-1092
 针对目前532 nm波长光的分束技术在光电测控系统(如激光干涉测速)等领域的广泛应用,提出一种光分束器的设计方法,此分束器可将光纤入射的532 nm绿光分成接近等比的多束光(包括一分二、一分三、一分四)。此系统首先用非球面透镜将光纤入射的光束准直,再通过分光片分光后用同样的透镜将光束耦合进光纤,达到了77%的通光效率,附加损耗约1 dB。详细介绍了非球面透镜的设计、分束器的结构、装配及其实验结果,并对实验结果以及研制过程中影响分束器效率的各种因素进行分析。  相似文献   

15.
高三物理第二分册,包括电学一章一第六章电磁振荡和电磁波,光学四章一第七章光的传播和光度学,第八章光的反射和折射,第九章光学仪器,第十章光的本性,最后是原子结构。同原有教材比较起来,在电磁振荡和电磁波、物理光学两部分有较大的精简,在光学仪器和原子结构两部分也作了一些精简,另外,在个别的地方加入了少量的新材料。由于课本出版可能较晚,现在把主要的变动简述如下,供同志们参考。  相似文献   

16.
设计并制备了一种具有较大变倍比及较高成像质量的充液式连续变焦微型柱透镜系统。该系统由埋入聚二甲基硅氧烷基片的两片对称弯月柱透镜及一片双凸柱透镜构成:两弯月柱透镜边缘位置胶合形成空腔,改变注入其中的液体折射率,可实现柱透镜系统的连续变焦;双凸柱透镜的优化设计可控制柱透镜系统整个变焦范围内的像差。当柱透镜系统中注入的液体折射率由1.3330变化到1.5530时,可实现系统后焦距由52.292~4.972 mm的连续平滑变化。整个变焦范围内,柱透镜系统径向弥散斑均方根半径始终小于5μm,接近衍射极限。对柱透镜系统的可能公差进行了详细分析,证实了该设计的可行性,并完成了透镜系统的加工制备及后焦距、调制传递函数曲线的测量。该变焦系统具有变倍比高、体积小、结构简单稳定、成像质量高等优势,可用于集成化的微型设备中。  相似文献   

17.
《现代物理知识》1989,(5):32-32
 北京正负电子对撞机的同步辐射实验室所有的三个前端区的安装及调试工作在三月底已全部完成,静态真空达到3×10-10乇,所有气动及遥控部件及连锁系统工作正常平稳.1989年4月3日晚9时29分,超高真空阀门打开,可动挡光器提开,束流开关打开,在所有三个窗口上均观察到由同步辐射可见光部分形成的明亮光斑.前端区由一系列光机元件组成,包括治动挡光器、狭缝、分束器、安全光闸等,是一个具有遥控、真空及安全连锁保护的超高真空系统.  相似文献   

18.
研究一种可以在高横纵比的线形区域形成特定照度分布的LED透镜设计方法,即分部设计法。全反射部分根据边缘射线原理和斯涅耳定律设计,采用数值积分迭代法计算,Matlab编程得到全反射部分的轮廓线;透射部分用试错法设计,用SolidWorks将全反射部分和透射部分整合出了一款新的拱形透镜。设计的透镜尺寸为25 mm×18 mm×10 mm。模拟与实践结果表明:透镜匹配扩展光源后,光学效率高于85%,半光强角可达9°×135°,可以在横纵比大于15的线形区域实现均匀照明。  相似文献   

19.
9MeV行波直线加速器用四极透镜系统状态分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 分析了大型海关集装箱检测系统用的9 MeV电子直线加速器的四极透镜系统变为斜四极透镜系统对束流聚焦特性的影响。对三单元四极透镜系统聚焦参数、制造和安装误差进行了分析,给出了参数选择方法和合理的误差要求。以上计算利用束流动力学程序TRANSPORT完成。  相似文献   

20.
任洪亮 《物理学报》2013,62(10):100701-100701
光镊是研究单分子生物物理特性的独特工具, 因而光镊设备的研发是一个极为重要的课题. 本文根据矩阵光学, 对基于有限远共轭显微镜的光镊操控光路进行计算, 得出了阱位径向操控和轴向操控方程, 并分析了光束调控系统、 共焦系统后置透镜和耦合透镜安装位置误差及物镜轴向位置调整对光镊阱位径向及轴向操控精度的影响. 计算结果显示, 当物镜初级像面和耦合透镜像方焦面完全重合, 光束调控系统和耦合透镜的距离误差对阱位径向和轴向操控精度没有影响. 光镊系统元器件定位不准时, 基于无限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差都小于基于有限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差. 当光镊耦合透镜定位误差控制在小于10 mm时, 基于有限远共轭显微镜光镊的径向和轴向操控误差分别小于5.9%和11.4%, 有限远共轭显微镜仍然存在改造为光镊的价值.本文理论为基于有限远共轭显微镜的光镊设计、改造和操控提供理论和实验指导. 关键词: 光镊 光学设计 矩阵 误差  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号