首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Luminescent benzocarbazole anions (BCZC) intercalated into the interlayer region of Mg-Al-layered double hydroxides (BCZC/LDH) with different layered charge densities (LCD) were prepared. The structure and chemical composition of the composites were characterized by X-ray diffraction, elemental analysis, thermogravimetry and differential thermal analysis (TG-DTA), infrared spectra (FT-IR), UV-vis absorption and fluorescence spectroscopy. The photoemission behavior of BCZC in the LDH matrix with high (Mg/Al ratio = 1.801) and low (Mg/Al ratio = 3.132) LCD is similar to that of BCZC solid and aqueous solution states respectively, indicating that the luminescence performances of the intercalated dye anions can be tuned by adjusting the LCD of the LDH layer. Moreover, the thermal stability and stacking order of BCZC are largely improved upon intercalation, and the BCZC/LDH thin film exhibits well polarized luminescence with the luminescent anisotropy of 0.15-0.20. In addition, molecular dynamics (MD) simulation was employed to calculate the basal spacing and molecular arrangement of the intercalated BCZC within the LDH matrix. The simulation results show that the distribution of BCZC anions is much broader in the gallery of Mg-Al-LDH with high LCD, while BCZC anions exhibit a more ordered arrangement in LDH with low LCD. Furthermore, the radial distribution functions of interlayer water molecules were also studied. Based on the combination of experiment and theoretical simulation, this work provides a detailed understanding of the tunable photoluminescence, orientation and diffusion behavior of the luminescent molecules confined within the gallery of a 2D inorganic matrix.  相似文献   

2.
The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).  相似文献   

3.
In this paper, the intercalation of 5-fluorocytosine (5-FC) into a layered inorganic host, Zn-Al layered double hydroxide (LDH), has been carried out using coprecipitation method to obtain 5-FC/LDH nanohybrids. The intercalated amount (AIn) of 5-FC into the LDH is remarkably dependent on the molar ratio (RF/M) of 5-FC to metal ions and the pH of coprecipitation system. The morphology of 5-FC molecules in 5-FC/LDH nanohybrids is dependent on the AIn. It is interestingly found that the morphology of the nanohybrid particles may be changed with the increase of RF/M from hexagonal plate particles to threadlike particles. The in vitro drug release from the nanohybrids is remarkably lower than that from the corresponding physical mixture and pristine 5-FC at either pH 4.8 or pH 7.5. In addition, the release rate of 5-FC from the nanohybrid at pH 7.5 is remarkably lower than that at pH 4.8, this is due to a possible difference in the release mechanism. The obtained results show these drug-inorganic nanohybrids can be used as a potential drug delivery system.  相似文献   

4.
Layered double hydroxides (LDHs) are new nanofillers which exhibit improved thermal and flammability properties in various kinds of polymer matrices. These materials have certain advantages over conventional metal hydroxides and also layered silicates so far as the flame retardancy is concerned. In this article, flammability and thermal properties of the nanocomposite based on low density polyethylene (LDPE) and Mg-Al based layered double hydroxide (Mg-Al LDH) are reported in detail. The nanocomposites containing different LDH concentrations were prepared by melt-compounding using a tightly intermeshing co-rotating twin-screw extruder. The morphological analysis reveals an exfoliated/intercalated type LDH particle morphology in these nanocomposites. The thermogravimetric analysis (TGA) shows that even a small amount of LDH improves the thermal stability and onset decomposition temperature in comparison with the unfilled LDPE. The heat release rate (HRR) and its maximum (PHRR) during cone-calorimeter investigation are found to be reduced significantly with increasing LDH concentration. The nanocomposites not only exhibit reduced total heat released (measure of propensity to produce long duration fire), but also lower tendency to fast fire growth (measured by the ratio of PHRR and time of ignition). The limited oxygen index (LOI) and the dripping behavior are also improved with increasing LDH concentration.  相似文献   

5.
Sixteen different amino acids are intercalated into Mg–Al layered double hydroxides (LDHs) by the reconstruction method and are characterized by powder XRD and FT-IR. The intercalated amino acid–LDHs (AA-LDHs) are used as catalysts for chemoselective O-methylation of phenol and S-methylation of thiophenol with dimethyl carbonate (DMC) as a green methylating agent. The intercalation behavior of various amino acids is influenced by various structural features of amino acids, namely, carbon chain length, structure, and physicochemical properties. In particular, amino acids possessing a hydrophobic side-chain show higher catalytic activity. A suitable reaction mechanism is proposed. The catalyst can also be recycled.  相似文献   

6.
An organic ultraviolet (UV) ray absorbent, p-aminobenzoic acid (PABA) was intercalated into a Zn-Ti layered double hydroxide (LDH) precursor by an anion-exchange reaction to obtain ZnTi-PABA-LDH, a new organic-inorganic nanocomposite. The structure and the thermal stability of ZnTi-PABA-LDH were characterized by XRD, FT-IR and TG-DTA. The results indicate ZnTi-PABA-LDH, synthesized by this method, exhibit relatively high crystallinity, and markedly enhanced thermal stability of PABA after intercalation into ZnTi-LDH. The UV-vis-NIR spectrophotometric and ESR data show excellent UV ray resistance and greatly decreased photocatalytic activity when PABA is intercalated into the interlayers of the ZnTi-LDH. The studies suggest that ZnTi-PABA-LDH may have potential applications as safe sunscreen materials.  相似文献   

7.
Aerogels of layered double hydroxides were prepared by a simple and eco-friendly method involving a quick coprecipitation followed by supercritical CO(2) drying. Such aerogels display high surface areas and enhanced adsorption behavior.  相似文献   

8.
The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 Å in pristine LDH to 21.3 Å in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug molecule in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion.  相似文献   

9.
A magnetic, luminescent Eu-doped Mg-Al layered double hydroxide with ibuprofen (IBU) intercalated in the gallery has been successfully prepared by a simple coprecipitation method. The physicochemical properties of the samples were well characterized by powder XRD, TEM, FTIR, TGA, inductively coupled plasma MS (ICP-MS), vibrating sample magnetometry (VSM), and fluorospectrophotometry. The results revealed that Fe(3)O(4) nanoparticles are coated on the surface of layered double hydroxides and the obtained (Mg(2)Al(0.95)Eu(0.05))(Fe)-(IBU) sample exhibits both superparamagnetic and luminescent properties, with a saturation magnetization value of 1.86?emu g(-1) and a strong emission band at 610?nm, respectively. Additionally, it was found that the ibuprofen loading amount is about 31?% (w/w), and the intercalated ibuprofen possesses sustained release behavior when the magnetic, luminescent composite is immersed in simulated body fluid (SBF).  相似文献   

10.
A new heterogeneous catalyst, Cr(III) Schiff base‐containing layered double hydroxide, was synthesized using the intercalation method. The Cr(III) Schiff base complex derived from 2‐hydroxy‐1‐naphthaldehyde and 4‐aminobenzoic acid was intercalated into the layered double hydroxide. The synthesized materials were characterized using inductively coupled plasma atomic emission spectrometry, energy‐dispersive X‐ray analysis, scanning electron microscopy, X‐ray diffraction, Brunauer–Emmett–Teller surface area measurement, Fourier transform infrared spectroscopy, thermogravimetric analysis, diffuse reflectance UV–visible spectroscopy and electron paramagnetic resonance spectroscopy. The catalytic activity was investigated for the oxidation of ethylbenzene with tert‐butylhydroperoxide as an oxidant under solvent‐free conditions as well as with lower chromium concentrations. In the oxidation reaction, ethylbenzene was oxidized to acetophenone and benzaldehyde. The catalyst was recycled ten times without significant loss of catalytic activity. Leaching studies performed with hot filtration experiments showed that the chromium catalyst was heterogeneous in nature and stable under the reaction conditions.  相似文献   

11.
The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Zn-Al layered double hydroxide incorporated with Zr(4+) were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr(4+) incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg L(-1). The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr(4+) ion content, relative to the total metals (Zr(4+)+Al(3+)+Zn(2+)). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, ΔH(ads) of -27.7±0.9 kJ mol(-1). Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorption-desorption cycles when exposed to an analyte concentration of 100 ppm.  相似文献   

12.
Fracture behaviour of polyethylene (PE)/Mg-Al layered double hydroxide (LDH) based nanocomposites has been studied by essential work of fracture (EWF) approach. Transmission electron microscopy (TEM and X-ray diffraction (XRD) analysis have been used to investigate the morphological features of these nanocomposites. A maximum in the non-essential work of fracture was observed at 5 wt.% LDH demonstrating enhanced resistance to crack propagation compared to pure PE. Morphological analyses of the nanocomposites show that the dispersed LDH platelets are partially exfoliated and also forms clusters with polymer chains remaining entrapped within. Rheological analyses show that the typical low-frequency Newtonian flow behaviour, as observed in unfilled polymer, shifts to shear-thinning behaviour with increasing LDH concentration. At 5 wt.% LDH a ductile-to-brittle transition has been observed. Fracture surface investigation by SEM reveals the arresting of the plastic crack growth by the LDH particle clusters, which is more significant at 5 wt.% LDH content. At higher LDH concentrations, the number of such particle clusters increases causing decrease in the average distance between them. As a result large-scale plastic deformation of the matrix at higher LDH concentration is effectively arrested favouring small strain failure and this in turn reaffirms the possible existence of a ductile-to-brittle transition. The study in general reveals that the resistance against crack initiation (essential work of fracture: EWF) and crack propagation (non-essential work of fracture: βwp) in these nanocomposites are structurally correlated with the matrix behaviour and the morphology (state of LDH particle dispersion) respectively.  相似文献   

13.
Low cost adsorption technology offers high potential to clean up laundry rinsing water. From an earlier selection of adsorbents (Schouten et al. 2007), layered double hydroxide (LDH) proved to be an interesting material for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS) which is the main contaminant in rinsing water. The main research question was to identify the effect of process parameters of the LDH synthesis on the stability of the LDH structure and the adsorption capacity of LAS. LDH was synthesized with the co-precipitation method of Reichle (1986); a solution of M2+(NO3)2 and M3+(NO3)3 and a second solution of NaOH and Na2CO3 were pumped in a beaker and mixed. The precipitate that was formed was allowed to age and was subsequently washed, dried and calcined. The process parameters that were investigated are the concentration of the initial solutions, M2+/M3+ ratio and type of cations. The crystallinity can be improved by decreasing the concentration of the initial solutions; this also decreases the leaching of M3+ from the brucite-like structure into the water. The highest adsorption capacity is obtained for Mg2+/Al3+ with a ratio 1 and 2 because of the higher charge density compared to ratio 3. Storing the LDH samples in water resulted in a reduction of adsorption capacity and a decrease in surface area and pore volume. Therefore, LDH is not applicable in a small device for long term use in aqueous surroundings. The adsorption capacity can be maintained during storage in a dry N2 atmosphere.  相似文献   

14.
A novel optical chemosensor was fabricated based on 1-amino-8-naphthol-3,6-disulfonic acid sodium (H-acid) intercalated layered double hydroxide (LDH) film via the electrophoretic deposition (EPD) method. The film of H-acid/LDH with the thickness of 1 μm possesses a well c-orientation of the LDH microcrystals confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The fluorescence detection for Hg(II) in aqueous solution was performed by using the H-acid/LDH film sensor at pH 7.0, with a linear response range in 1.0 × 10−7 to 1.0 × 10−5 mol L−1 and a detection limit of 6.3 × 10−8 mol L−1. Furthermore, it exhibits excellent selectivity for Hg(II) over a large number of competitive cations including alkali, alkaline earth, heavy metal and transitional metals. The specific fluorescence response of the optical sensor is attributed to the coordination between Hg(II) and sulfonic group in the H-acid immobilized in the LDH matrix, which was verified by NMR spectroscopy and UV–vis spectra. In addition, density functional theory (DFT) calculation further confirms that the coordination occurs between one Hg2+ and two O atoms in the sulfonic group, which is responsible for the significant fluorescence quenching of the H-acid/LDH film. The results indicate that the H-acid/LDH composite film can be potentially used as a chemosensor for the detection of Hg2+ in the environmental and biomedical field.  相似文献   

15.
Oxomolybdenum(VI) complexes of 3,4-dihydroxybenzoic acid (3,4-H 2dhb) have been incorporated into layered double hydroxides (LDHs) by treatment of the LDH-nitrate (Zn-Al, Mg-Al) or LDH-chloride (Li-Al) precursors with aqueous or water/ethanol solutions of the complex (NMe 4) 2[MoO 2(3,4-dhb) 2].2H 2O at 50 or 100 degrees C. The texture and chemical composition of the products were investigated by elemental analysis and scanning electron microscopy (SEM) with coupled energy dispersive spectroscopy (EDS). Microanalysis for N and EDS analysis for Cl showed that at least 90% of nitrate or chloride ions were replaced during the ion exchange reactions. The final Mo content in the materials varied between 6.5 and 11.6 wt %. Mo K-edge EXAFS analysis, supported by IR, Raman, UV-vis, and (13)C{ (1)H} CP/MAS NMR spectroscopic studies, showed the presence of cointercalated [MoO 2(3,4-dhb) 2] ( m- ) and [Mo 2O 5(3,4-dhb) 2] ( m- ) complexes in proportions that depend on the type of LDH support and the reaction conditions. The binuclear bis(catecholate) complex, with a Mo...Mo separation of 3.16 A, was the major species intercalated in the Zn-Al and Li-Al products prepared using only water as solvent. The X-ray powder diffraction (XRPD) patterns of all the Mo-containing LDHs showed the formation of an expanded phase with a basal spacing around 15.4 A. High-resolution synchrotron XRPD patterns were indexed with hexagonal unit cells with a c-axis of either 30.7 (for Li-Al-Mo LDHs) or 45.9 A (for a Zn-Al-Mo LDH). Fourier maps ( F obs) calculated from the integrated intensities extracted from Le Bail profile decompositions indicated that the binuclear guest species are positioned such that the Mo --> Mo vector is parallel to the host layers, and the overall orientation of the complex is perpendicular to the same layers. The thermal behavior of selected materials was studied by variable-temperature XRPD, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).  相似文献   

16.
Hollow nanoshells of layered double hydroxide (LDH) have been fabricated using exfoliated LDH nanosheets as a shell building block and polystyrene beads as a sacrificial template.  相似文献   

17.
The removal of the sulfate anion from water using synthetic hydrotalcite (Mg/Al LDH) was investigated using powder X-ray diffraction (XRD) and thermogravimetric analysis (TG). Synthetic hydrotalcite Mg6Al2(OH)16(CO3)·4H2O was prepared by the co-precipitation method from aluminum and magnesium chloride salts. The synthetic hydrotalcite was thermally activated to a maximum temperature of 380 °C. Samples of thermally activated hydrotalcite where then treated with aliquots of 1000 ppm sulfate solution. The resulting products where dried and characterized by XRD and TG. Powder XRD revealed that hydrotalcite had been successfully prepared and that the product obtained after treatment with sulfate solution also conformed well to the reference pattern of hydrotalcite. The d(003) spacing of all samples was found to be within the acceptable region for a LDH structure. TG revealed all products underwent a similar decomposition to that of hydrotalcite. It was possible to propose a reasonable mechanism for the thermal decomposition of a sulfate containing Mg/Al LDH. The similarities in the results may indicate that the reformed hydrotalcite may contain carbonate anion as well as sulfate. Further investigation is required to confirm this.  相似文献   

18.
制备了一系列含不同金属离子的磺化Salen金属配合物插层水滑石催化剂用于甘油催化氧化制备二羟基丙酮(DHA)。利用X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)及电感耦合等离子发射光谱(ICP)分析手段对催化剂进行了表征。结果表明,磺化Salen配体插入镁铝水滑石(LDH)层板间,金属离子与磺化Salen配体配合,制备出磺化Salen金属配合物插层的水滑石非均相催化剂。反应结果表明,含Cr3+及含Cu2+催化剂有利于H2O2活化,催化活性较高,含Cu2+催化剂利于甘油脱氢,DHA选择性较高。含Cu2+催化剂用于甘油催化氧化反应时,在pH值为7、60 ℃条件下反应4 h,甘油转化率为40.3%,DHA选择性达到52.9%。  相似文献   

19.
20.
The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号