首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Abstract  

Quantitative visualization of high-Schmidt-number scalar fields has been performed in grid turbulence by means of a planar laser-induced fluorescence (PLIF) technique. The Reynolds number based on a mesh size of the grid is 2500 and the Schmidt number of the scalar is around 2100. To correct for the effects of various spatiotemporal variations such as quantum yield, a recently proposed correction method was introduced in the present experiment. In the present work, a PLIF experiment in combination with a calibration region installed outside of the test section is proposed. Visualizations of the instantaneous fluctuating scalar field suggest that mushroom-like structures accompanied by a pair of stirring structures, called engulfments, exist and contribute to large-scale scalar transfer. Visualization of the scalar dissipation field in the horizontal plane suggests that accumulation of the filament structures, which can be related to the mixing transition, locally exists around large-|c| regions, where |c| is the absolute value of the instantaneous fluctuating concentration. Thus, accumulation of the filament structures should be considered in the development of a turbulent mixing model for high-Schmidt-number scalar transfer.  相似文献   

2.
3.
4.
5.
A combination of particle imaging velocimetry (PIV), particle tracking velocimetry (PTV) and planar laser-induced fluorescence (PLIF) was employed to measure conditional flow field statistics in partially premixed turbulent opposed jet flames. These flames were observed to be very sensitive to excessive seeding of particles. Since flames close to extinction were studied, very low seeding densities were required to prevent impact on the extinction behavior of the flame, and conventional PIV algorithms would have resulted in poor spatial resolution. An improved PIV algorithm was developed, in connection with a PTV procedure used in high-temperature regions of low seed density, and revealed high in-plane resolution up to 300 μm. The PIV/PTV algorithm slightly under-resolved the Kolmogorov scales for the present cases, whereas Batchelor scales were fully resolved in-plane by the simultaneous OH PLIF. In the data processing, transient OH contours obtained from single-shots were used to define flame-fixed coordinates. Conditional velocities, out-of-plane vorticity, 2D dilatation, and both axial and radial strain were processed from the data. The conditional statistics show that vorticity is preferably generated close to the reaction zone, particularly at off-centerline positions. Hence, flow-chemistry interactions could be identified directly in the region of the reaction zone. This finding was also supported by qualitative high speed Mie scattering/chemiluminescence imaging that permitted temporally resolved visualization of the formation of eddies just upstream of the luminous flame areas.  相似文献   

6.
Flow visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering(NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar,transitional and turbulent region,with which the fractal measurement can be implemented. Two methods of measuring fractal dimension were introduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region,the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region,the fractal dimension will not vary apparently for different flow structures,which em-bodies the self-similarity of supersonic turbulence.  相似文献   

7.
The generation of small-scale anisotropy in turbulent shearless mixing is numerically investigated. Data from direct numerical simulations at Taylor Reynolds' numbers between 45 and 150 show not only that there is a significant departure of the longitudinal velocity derivative moments from the values found in homogeneous and isotropic turbulence but that the variation of skewness has an opposite sign for the components across the mixing layer and parallel to it. The anisotropy induced by the presence of a kinetic energy gradient has a very different pattern from the one generated by an homogeneous shear. The transversal derivative moments in the mixing are in fact found to be very small, which highlights that smallness of the transversal moments is not a sufficient condition for isotropy.  相似文献   

8.
In the present study, we used a simultaneous PIV-OH PLIF measurement to acquire the strain rate and the chemical intensity and suggested a new combustion phase diagram. This simultaneous measurement was used to analyze the flame structure and to classify the combustion regimes of the opposed impinging jet combustor according to the change of the orifice diameters at the pre-chambers. The shear strain rates were obtained from the velocity measurement by PIV to represent flow characteristics and the OH radical intensities were obtained from OH PUF to indicate the flame characteristics. When the strain rate and OH intensity at each point of the measurement zones are plotted at the strain rate-chemical intensity diagram, the distribution of each case showed the characteristics of each flame regime. The change of combustor condition made different distribution in the combustion phase diagram. As the orifice diameter of the pre-chamber decreases, well-mixed turbulent flames are produced and the combustion phase is moved from the moderated turbulence regime to the thickened reaction regime.  相似文献   

9.
A strategy of diagnostics of ultra-lean combustion based on acetone-OH simultaneous PLIF is presented. Acetone seeded in the fuel flow and combustion-generated OH work for a marker of \ldunburned\rd and \ldburnt\rd zones, respectively. Since acetone and OH does not coexist when the proper combustion takes place, the signal \ldvalley\rd (dark zone) between acetone and OH fluorescence can be detected, which corresponds to flame zone; representative of the combustion status. System required for current imaging technique is one-laser and one-detector combination with \ldturned\rd band-pass filter. Transmittance characteristics of the filter and acetone-seeding rate are key issues to attain clear imaging, and we found that there is proper combination of them for that purpose. Imaging demonstration for the turbulent premixed flames shows the usefulness and applicability of this scheme on complex flame diagnostics: unique flame broken flame structure (\ldunburned\rd or \ldburnt\rd islands exist separately) are clearly obtained by this approach.  相似文献   

10.
The aim of this work is to propose a new model for turbulent flows, called the fractal model (FM), applicable both in a Reynolds averaged Navier–Stokes (RANS) and a large-eddy simulation (LES) formulation, with the ultimate goal of applying it to simulate turbulent combustion irrelevant of its mode (premixed or non-premixed). The model is able to turn itself off in the laminar zones of the flow, and in particular near walls. It is based on the fractal theory. It describes the physics of the smaller spatial scales and therefore represents a small-scales model.

FM describes the physics of the small scales of turbulence based on the phenomenological concept of vortex cascade and on the self-similar behaviour of turbulence in the inertial range. Such a model is used in each cell of a numerical calculation. A characteristic length Δ is associated to each cell, and the local energy u 3 Δ/Δ is distributed over a certain number of eddies, which depends on the local Reynolds number Re Δ. Each vortex of the cascade generates N c vortices; the recursive process of vortex generation terminates at the dissipative scale level, i.e. when the eddy Reynolds number is equal to one. FM is also able to estimate the volume fraction occupied by the dissipative fine structures of turbulence; this quantity is critical in reactive turbulent flows.

The physics of small scales is summarized by a turbulent ‘viscosity’ μt, to be added to the molecular one. μt is zero where the flow is laminar and, in particular, goes to zero at solid walls. Assuming μt to be isotropic, FM is applicable in a RANS formulation (IFM, isotropic fractal model). The model can be extended to the anisotropic case (AFM, anisotropic fractal model) and therefore used to close the transport equations in an LES approach. In the present paper, the model (IFM) is used in a RANS approach and is validated through a test case studied experimentally by Johnson and Bennett, and numerically (with LES) by Akselvoll and Moin. The results obtained are in good agreement both with the experimental and the numerical ones. Other tests are being performed.  相似文献   

11.
A criterion for evaluating beam quality is discussed.By dividing the mediumdisturbances into the ordered and random part, introducing the time-averaged variance ofphase distortion and fitting the wavefront with Zernike polynomials,a simplified formula forevaluating beam quality in a turbulent mixing medium is derived.  相似文献   

12.
The paper contains an extended summary of an invited plenary talk given at the Workshop on Active Chaos at the Los Alamos National Laboratory on 29-31 May 2001 by one of us (F.S.R.). (c) 2002 American Institute of Physics.  相似文献   

13.
We experimentally study variable–density mixing of miscible gases in an open-circuit wind tunnel using simultaneous particle image velocimetry and planar laser-induced fluorescence. Experiments of a high Atwood number (0.6) and low Atwood number (0.1) are performed to compare non-Boussinesq cases with the Boussinesq limit. The higher density gas is injected into the wind tunnel co-flow using a round jet configuration, and near-field and far-field measurements are performed to examine mixing in both momentum and buoyancy-dominated regimes. The effects of buoyancy are measurable and important in both large-scale mixing features and in turbulence quantities. The low Atwood number PDFs (probability density functions) show fast and uniform mixing. The high Atwood number PDFs of density have skewness towards the larger densities, indicating less mixing of the heavy fluid due to its inertia. The skewness in the density gradient PDFs at high Atwood number displays strong density local variations that can enhance mixing at molecular scales. Turbulent kinetic energy decreases with streamwise distance from the jet for low Atwood number but increases for high Atwood number due to larger buoyancy and density-driven shear. Over 3000 experimental realisations are used to calculate statistical characteristics of the mixing, including valuable and rarely given data such as Favre-averaged turbulent quantities: mass flux velocity, Reynolds stress, turbulent kinetic energy, and density-specific volume correlation. Buoyancy effects are observed in these quantities and the trends are compared qualitatively with direct numerical simulations.  相似文献   

14.
The topological evolution near the turbulent/non-turbulent interface (TNTI) in turbulent mixing layer is studied by means of statistical analysis of the invariants of velocity gradient tensor (VGT) based on direct numerical simulation data. The dynamics of topological evolution is investigated in terms of the source terms of the evolution equations for the invariants, including the pressure effect term, viscous effect term and interaction term among the invariants. It is found that the local topology of fluid particles at the TNTI evolves from non-focal region to focal region in the plane of the second (Q) and the third (R) invariants of the VGT. The topological evolution is mainly associated with the pressure effect term in the TNTI region. According to the analysis of the evolution of enstrophy and dissipation, the enstrophy increase and the dissipation decrease are revealed in the TNTI region, which are caused by viscous vorticity diffusion near the TNTI. A weak correlation between the strain rate and the rotation rate is found in the TNTI region which is related to the reduction of enstrophy production. The alignments between vorticity and strain near the TNTI are investigated and a strong alignment of the vorticity with the extensive eigenvector direction is identified in the TNTI region.  相似文献   

15.
利用平面激光诱导荧光(PLIF)技术,通过选择适合的OH自由基激励线,定量测量了甲烷-空气燃烧火焰的二维温度场分布。给出炉面中心上方火焰温度随离炉面高度的变化和距炉面12 mm高处沿炉面水平方向变化的实验测量结果并进行了讨论与分析。与利用相干反斯托克斯喇曼散射(CARS)技术进行测温的实验结果相比,该测量的相对不确定度优于5%。  相似文献   

16.
PLIF法定量测量甲烷-空气火焰二维温度场分布   总被引:5,自引:0,他引:5       下载免费PDF全文
利用平面激光诱导荧光(PLIF)技术,通过选择适合的OH自由基激励线,定量测量了甲烷-空气燃烧火焰的二维温度场分布。给出炉面中心上方火焰温度随离炉面高度的变化和距炉面12 mm高处沿炉面水平方向变化的实验测量结果并进行了讨论与分析。与利用相干反斯托克斯喇曼散射(CARS)技术进行测温的实验结果相比,该测量的相对不确定度优于5%。  相似文献   

17.
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in the whole volume (global) of interest. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various three-dimensional, bubbly two-phase flow situations. This information is useful for developing or improving existing computer constitutive models that simulate this type of flow field. It is also useful for understanding the detailed structure of two-phase flows.  相似文献   

18.
Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a flat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to y/ =0.4, which is further away from the wall than that ...  相似文献   

19.
The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号