首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report development of generators for periodic, satellite-free fluxes of monodisperse drops with diameters down to 10 microm from cryogenic liquids such as H2, N2, Ar, and Xe (and, as a reference fluid, water). While the break up of water jets can be described well by Rayleigh's linear theory, we find jet regimes for H2 and N2 which reveal deviations from this behavior. Thus, Rayleigh's theory is inappropriate for thin jets that exchange energy and/or mass with the surrounding medium. Moreover, at high evaporation rates, the axial symmetry of the dynamics is lost. When the drops pass into vacuum, frozen pellets form due to surface evaporation. The narrow width of the pellet flux paves the way towards various industrial and scientific applications.  相似文献   

2.
Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.  相似文献   

3.
The effect of electric charge on the jet surface on the capillary instability of the jet and its disintegration into drops is analyzed. A theoretical explanation is given for the electrostatic mechanism of instability development and jet disintegration that is akin to the mechanisms behind the instability of a heavily charged drop (Rayleigh instability) and flat uniformly charged liquid surface (Tonks-Frenkel instability) but differs qualitatively from the conventional capillary mechanism of instability and disintegration.  相似文献   

4.
A stable intense jet with a clear-cut bright sheath has been detected on the anode of a 10-ms-long high-current vacuum arc with a current amplitude of 15 kA. The jet is adjacent to the hot spot of a molten metal on the anode surface. The primary light of the jet is emitted by neutrals. The sheath of the jet is surrounded by an ion-induced diffuse glow. The anode jet arises from interaction between the cathode and anode plasmas. Because of this, the size of the jet inversely depends on the current of the arc and the jet becomes observable only by the end of the current pulse. This object (anode jet with a bright sheath) is well reproducible when the arc is initiated between copper-chromium electrodes. In the case of pure copper electrodes, such objects occur randomly and appear at long projections of the molten metal, where heat release is hampered, and at large drops moving in the interelectrode gap. This means that the anode evaporation intensity is crucial for the appearance of bright-sheath jets.  相似文献   

5.
Breakup of thin threads is widely observed in nature and technology. As a surfactant-covered liquid jet approaches breakup, its profile consists of a periodic pattern of drops connected by thin threads. Near the locations where the threads join the drops, simulations show that a series of thinner threads arise as the jet breaks. That threads can continue to form repeatedly without addition of noise when surfactants are present is unexpected based on earlier studies of surfactant-free systems. Thinning dynamics of successive threads are shown to be self-similar and approach Eggers's universal solution for clean interfaces.  相似文献   

6.
A liquid forced through an orifice into an immiscible fluid ultimately breaks into drops due to surface tension. Drop formation can occur right at the orifice in a dripping process. Alternatively, the inner fluid can form a jet, which breaks into drops further downstream. The transition from dripping to jetting is not understood for coflowing fluid streams, unlike the case of drop formation in air. We show that in a coflowing stream this transition can be characterized by a state diagram that depends on the capillary number of the outer fluid and the Weber number of the inner fluid.  相似文献   

7.
真空电弧的特性直接受到从阴极斑点喷射出的等离子体射流的影响,对等离子体射流进行数值仿真有助于我们深入了解真空电弧的内部物理机制.然而,磁流体动力学和粒子云网格仿真方法受限于计算精度和计算效率的原因,无法有效地应用于真空电弧等离子体射流仿真模拟.本文开发了一套三维等离子体混合模拟算法,并在此基础上建立了真空电弧单阴极斑点...  相似文献   

8.
Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.  相似文献   

9.
The gasdynamic parameters of nonsteady expansion of He, Ar, N2, and SiH4 from a sonic nozzle into a space with reduced background gas pressure were experimentally studied for moderate values of n (103–106) and the Reynolds number (ReL∼100–102). The jet set times necessary for the formation of pulsed jets of a given finite duration are determined. The results are generalized in terms of dimensionless similarity parameters. The laws of motion of the leading and trailing fronts in pulsed jets of various gases are established. The leading front of a pulsed jet propagates at a velocity significantly smaller than the limiting steady value. The jet expansion dynamics is determined by the ratio of the momentum of the expanding gas to that of the background gas displaced from the flow region. The length of the steady flow region in a pulsed jet monotonically decreases downstream from the source and drops with increasing background gas pressure because of the loss of jet particles in the trailing rarefaction wave; this length increases with the initial momentum because the background gas is more intensively displaced from the flow region.  相似文献   

10.
A dispersion relation is derived for capillary waves with an arbitrary symmetry on the surface of a charged jet of a finite-conductivity viscous liquid placed in an electric field collinear with the axis of the jet. Analytical calculations are carried out in an approximation that is linear in dimensionless wave amplitude. In the case of axisymmetric waves, the instability of which causes disintegration of the jet into drops, the finiteness of the potential equalization rate has a noticeable effect only for jets of poorly conducting liquids. The charge relaxation shows up in that “purely relaxation” periodic and aperiodic liquid flows arise. When the conductivity of the liquid declines, the instability growth rates for unstable waves increase and their spectrum extends toward short waves. A charge present on the surface of the jet enhances its instability. An increase in the charge surface diffusion coefficient variously influences the capillary and relaxation branches of the solution: the damping ratio increases in the former case and decreases in the latter. As the diffusion coefficient rises, relaxation flows may become unstable.  相似文献   

11.
A dispersion equation is derived for axisymmetric and nonaxisymmetric capillary oscillations in a jet of viscous conducting liquid subjected to a constant potential. It is shown that conditions arising when the surface charge density in the jet is high cause the instability of nonaxisymmetric, rather than axisymmetric, modes with the resulting disintegration of the jet into drops of various sizes. This theoretical finding allows one to correctly interpret of experimental data for the spontaneous disintegration of charged jets.  相似文献   

12.
13.
李洋  贾敏  吴云  李应红  宗豪华  宋慧敏  梁华 《中国物理 B》2016,25(9):95205-095205
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa.  相似文献   

14.
In literature, surface tension has been investigated mainly from a Thermodynamics standpoint, more rarely with kinetic methods. In the present work, surface tension of drops is studied in the framework of kinetic theory, starting from the Sutherland approximation to Van Der Waals interaction between molecules. Surface tension is calculated as a function of drop radius: it is found that it approaches swiftly an asymptotic value, for radii of several times the distance of minimum approach D of the Sutherland potential. This theoretical asymptotic value is compared to experimental values of surface tension in plane surfaces of a few liquids, and is found in reasonable agreement.  相似文献   

15.
When processing experimental data for the hydrodynamics of a two-phase flow in a spray produced by a mechanical nozzle, we revealed an anomaly in the behavior of the hydrodynamic drag of drops: the drag coefficient turns out to be four to seven times lower than the previously known values. Several hypotheses are put forward to explain the anomaly. It is found that, when the gas flows around drops under highly turbulent conditions, an “early” (i.e., observed even at transition Reynolds numbers, Re>50) crisis of drag resistance of drops takes place. This new physical phenomenon allows us to account for a number of features of the two-phase flow that are observed in the experiment. Among these features is, in particular, the fact that the momentum transferred to the gas is roughly half the initial momentum of the liquid jet.  相似文献   

16.
The stability mechanism of laminar coflow jet diffusion flames in normal gravity has been studied computationally and experimentally. N-butane, the heaviest alkane in a gaseous state at ambient temperature and pressure, is used as the fuel since the reaction mechanism is similar to that of higher (liquid) hydrocarbons. The critical mean n-butane jet and coflowing air velocities at flame stability limits are measured using a small fuel tube burner (0.8 mm inner diameter). The time-dependent, axisymmetric numerical code with a detailed reaction mechanism (58 species and 540 reactions), molecular diffusive transport, and a radiation model, reveals a flame structure. A fuel-lean peak reactivity spot (i.e., reaction kernel), possessing the hybrid nature of diffusion-premixed flame structure at a constant temperature of ≈1560 K, is formed at the flame base and controls the flame stability. In a near-quiescent environment, the flame base resides below the fuel tube exit plane and thereby premixing is limited. As the coflowing air velocity is increased incrementally under a fixed fuel jet velocity, the flame base moves slightly above (≈1 mm) the burner exit and vigorous premixed combustion becomes prevailing. The local heat-release rate at the reaction kernel nearly doubles due to the increased convective oxygen flux (i.e., a blowing effect). The local Damköhler number, newly defined as a ratio of the square root of the local heat-release rate and the local velocity, decreases gradually first and drops abruptly at a critical threshold value and the flame base lifts off from the burner rim. The calculated coflow air velocity at liftoff is ≈0.38 m/s at the fuel jet velocity of 2 m/s, which is consistent with an extrapolated measured value of 0.41 m/s. This work has determined the critical Damköhler number at the stability limit quantitatively, for the first time, for laminar jet diffusion flames.  相似文献   

17.
There is abundant evidence to show that the exhaust noise from gas turbines contains components which exceed the jet mixing noise at low jet velocities. This paper describes results of a theory developed to calculate the acoustic power produced by temperature fluctuations from the combustor entering the turbine. With the turbine Mach numbers and flow directions at blade mid-height, and a typical value for the fluctuation in temperature, as parameters it has been possible to predict the acoustic power due to this mechanism for three different engines. In all three cases the agreement with measurements of acoustic power at low jet velocities is very good. Similarly, based on a measured spectrum of the temperature fluctuation, the prediction of the acoustic power spectrum agrees quite well with that measured.  相似文献   

18.
Experimental data for the dispersion of a liquid using a curved-end thin rod partially immersed in it and oscillating with a high frequency are reported. Depending on immersion conditions, the finely dispersed phase of a liquid-droplet aerosol can be obtained by exciting capillary standing waves and generating large drops emitted from the end face of the rod in the form of a directed jet.  相似文献   

19.
Aero-dynamical models of sound generation in an organ pipe driven by a thin jet are investigated through an experimental examination of the vortex-sound theory. An important measurement requirement (acoustic cross-flow as an irrotational potential flow reciprocating sinusoidally) from the vortex-sound theory is carefully realized when the pipe is driven with low blowing pressures of about 60 Pa (jet velocities of about 10 m/s). Particle image velocimetry (PIV) is applied to measure the jet velocity and the acoustic cross-flow velocity over the mouth area at the same phase by quickly switching the jet drive and the loudspeaker-horn drive. The vorticity of the jet flow field and the associated acoustic generation term are evaluated from the measurement data. It is recognized that the model of the “jet vortex-layer formation” is more relevant to the sound production than the vortex-shedding model. The acoustic power is dominantly generated by the flow–acoustic interaction near the edge, where the acoustic cross-flow velocity takes larger magnitudes. The acoustic generation formula on the vortex sound cannot deny the conventional acoustical volume-flow model because of the in-phase relation satisfied between the acoustic pressure at the mouth and the acoustic volume flow into the pipe. The vortex layers formed along both sides of the jet act as the source of an accelerating force (through the “acceleration unbalance”) with periodically alternating direction to oscillate the jet flow and to reinforce the acoustic cross-flow at the pipe mouth.  相似文献   

20.
施春燕 《光子学报》2014,38(9):2419-2422
分析了喷射距离对射流抛光效果的影响,基于计算流体动力学进行了喷射距离的分析和优化.通过构建射流抛光不同喷射距离的物理模型,采用能更好地处理流线弯曲程度较大的流动的RNG k-ε紊流模型应用于射流抛光的数学建模,使用SIMPLEC算法对射流模型进行数值计算,得到了不同模型的射流抛光冲击射流流场及工件壁面上的冲击压力、紊动强度、壁流速度分布.根据射流抛光对冲击射流特性的要求,比较和分析不同喷距模型的数值仿真结果,结果显示,射流抛光最优化喷距范围为喷嘴口径的10倍至12倍之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号