首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

2.
We study the transport through a quantum dot, in the Kondo Coulomb blockade valley, embedded in a mesoscopic device with finite wires. The quantization of states in the circuit that hosts the quantum dot gives rise to finite size effects. These effects make the conductance sensitive to the ratio of the Kondo screening length to the wires length and provide a way of measuring the Kondo cloud. We present results obtained with the numerical renormalization group for a wide range of physically accessible parameters.  相似文献   

3.
We investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling, a rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom, followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi-liquid "charge-ordered" phase with finite residual entropy and anomalous transport properties. Physical arguments and numerical renormalization group methods are employed to obtain a detailed understanding of the problem.  相似文献   

4.
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown.  相似文献   

5.
We present an extension of the concepts of the functional renormalization group approach to quantum many-body problems in non-equilibrium situations. The approach is completely general and allows calculations for both stationary and time-dependent situations. As a specific example we study the stationary state transport through a quantum dot with local Coulomb correlations. We discuss the influence of finite bias voltage and temperature on the current and conductance.  相似文献   

6.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

7.
We study the ac conductance and equilibrium current fluctuations of a Coulomb-blockaded quantum dot in the Kondo regime. To this end we have developed an extension of the numerical renormalization group suitable for the nonperturbative calculation of finite-frequency transport properties. We demonstrate that ac transport gives access to the many-body resonance in the equilibrium spectral density. It provides a new route for measuring this key signature of Kondo physics, which so far has defied direct experimental observation.  相似文献   

8.
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.  相似文献   

9.
10.
Measurements of the persistent current in a ring containing a quantum dot would afford a unique opportunity to finally detect the elusive Kondo screening cloud. We present the first large-scale numerical results on this controversial subject using exact diagonalization and density matrix renormalization group (RG). These extremely challenging numerical calculations confirm RG arguments for weak to strong coupling crossover with varying ring length and give results on the universal scaling functions. We also study, analytically and numerically, the important and surprising effects of particle-hole symmetry breaking.  相似文献   

11.
熊永臣  王为忠  杨俊涛  黄海铭 《中国物理 B》2015,24(2):27501-027501
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.  相似文献   

12.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

13.
The numerical analysis of strongly interacting nanostructures requires powerful techniques. Recently developed methods, such as the time-dependent density matrix renormalization group (tDMRG) approach or the embedded-cluster approximation (ECA), rely on the numerical solution of clusters of finite size. For the interpretation of numerical results, it is therefore crucial to understand finite-size effects in detail. In this work, we present a careful finite-size analysis for the examples of one quantum dot, as well as three serially connected quantum dots. Depending on “odd-even” effects, physically quite different results may emerge from clusters that do not differ much in their size. We provide a solution to a recent controversy over results obtained with ECA for three quantum dots. In particular, using the optimum clusters discussed in this paper, the parameter range in which ECA can reliably be applied is increased, as we show for the case of three quantum dots. As a practical procedure, we propose that a comparison of results for static quantities against those of quasi-exact methods, such as the ground-state density matrix renormalization group (DMRG) method or exact diagonalization, serves to identify the optimum cluster type. In the examples studied here, we find that to observe signatures of the Kondo effect in finite systems, the best clusters involving dots and leads must have a total z-component of the spin equal to zero.  相似文献   

14.
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding asymptotically exact results for the low-temperature properties of the system. We find that the interplay between quantum fluctuations and Ohmic dissipation destroys the quantum critical point by smearing. We also determine the phase diagram and the behavior of observables in the vicinity of the smeared quantum phase transition.  相似文献   

15.
We develop a projective quantum Monte Carlo algorithm of the Hirsch-Fye type for obtaining ground state properties of the Anderson impurity model. This method is employed to solve the self-consistency equations of dynamical mean field theory. It is shown that the approach converges rapidly to the ground state so that reliable zero-temperature results are obtained. As a first application, we study the Mott-Hubbard metal-insulator transition of the frustrated one-band Hubbard model, reconfirming the numerical renormalization group results.  相似文献   

16.
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.  相似文献   

17.
熊永臣  张俊  周望怀 《中国物理 B》2017,26(9):97102-097102
The transport property and phase transition for a parallel triple dot device are studied by adopting Wilson's numerical renormalization group technique, focusing on the effects of level spacings between neighboring dot sites. By keeping dot 2at the half-filled level and tuning the level differences, it is demonstrated that the system transits from local spin quadruplet to triplet and doublet sequently, and three kinds of Kondo peaks at the Fermi surface could be found, which are separated by two Kosterlitz–Thouless type quantum phase transitions and correspond to spin-3/2, spin-1, and spin-1/2 Kondo effect,respectively. To obtain a detailed understanding of these problems, the charge occupation, the spin–spin correlation, the transmission coefficient, and the temperature-dependent magnetic moment are shown, and necessary physical arguments are given.  相似文献   

18.
We describe the generalization of Wilson's numerical renormalization group method to quantum impurity models with a bosonic bath, providing a general nonperturbative approach to bosonic impurity models which can access exponentially small energies and temperatures. As an application, we consider the spin-boson model, describing a two-level system coupled to a bosonic bath with power-law spectral density, J(omega) proportional to omega(s). We find clear evidence for a line of continuous quantum phase transitions for sub-Ohmic bath exponents 0相似文献   

19.
Using a fermionic renormalization group approach, we analyze a model where the electrons diffusing on a quantum dot interact via Fermi-liquid interactions. Describing the single-particle states by random matrix theory, we find that interactions can induce phase transitions (or crossovers for finite systems) to regimes where fluctuations and collective effects dominate at low energies. Implications for experiments and numerical work on quantum dots are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号