首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and coordination chemistry of two chiral tetradentate pyridylimine Schiff base ligands are reported. The ligands were prepared by the nucleophilic displacement of both bromides of 1,3-bis(bromomethyl)benzene (2) or 3,5-bis(bromomethyl)toluene (3) by the anion of (S)-valinol, followed by capping of both amine groups with pyridine-2-carboxaldehyde. Both ligands react with CoCl(2) and NiCl(2) to give [M(2)L(2)Cl(2)](2+) complexes. Remarkably, neither fluoride nor bromide ions can act as bridging ligands. The formation of [Co(2)((S)-3)(2)Cl(2)](2+) is highly diastereoselective, and X-ray crystallography shows that both metal centers in the [Co(2)((S)-3)(2)Cl(2)](CoCl(4)) complex adopt the lambda configuration (crystal data: [Co(2)(C(31)H(40)N(4)O(2))(2)Cl(2)](CoCl(4)).(CH(3)CN)(3), monoclinic, P2(1), a = 11.595(2) A, b = 22.246(4) A, c = 15.350(2) A, V = 3705(1) A(3), beta = 110.643(3) degrees, Z = 2). Structurally, the dinuclear complex can be viewed as a helicate with the helical axis running perpendicular to the [Co(2)Cl(2)] plane. The reaction of racemic 2 with CoCl(2) was shown by (1)H NMR spectroscopy to yield a racemic mixture of Lambda,Lambda-[Co(2)((S)-2)(2)Cl(2)](2+) and delta,delta-[Co(2)((R)-2)(2)Cl(2)](2+) complexes; that is, a homochiral recognition process takes place. Spectrophotometric titrations were performed by titrating (S)-3 with Co(ClO(4))(2) followed by Bu(4)NCl, and the global stability constants of [Co((S)-3)](2+) (log beta(110) = 5.7), [Co((S)-3)(2)](2+) (log beta(120) = 11.6), and [Co(2)((S)-3)(2)Cl(2)](2+) (log beta(110) = 23.8) were calculated. The results revealed a strong positive cooperativity in the formation of [Co(2)((S)-3)(2)Cl(2)](2+). Variable-temperature magnetic susceptibility curves for [Co(2)((S)-2)(2)Cl(2)](BPh(4))(2) and [Co(2)((S)-3)(2)Cl(2)](BPh(4))(2) are very similar and indicate that there are no significant magnetic interactions between the cobalt(II) centers.  相似文献   

2.
The new phenol-imidazole pro-ligands (R)LH react with Co(BF(4))(2).6H(2)O in the presence of Et(3)N to form the corresponding [Co(II)((R)L)(2)] compound (R = Ph (1), PhOMe (2), or Bz (3)). Also, (Bz)LH, reacts with Co(ii) in the presence of Et(3)N and H(2)O(2) to form [Co(III)((Bz)L)(3)](4). The structures of 1.2.5MeCN, 2.2DMF, 3.4MeOH, and 4.4DMF have been determined by X-ray crystallography. 1, 2, and 3 each involve Co(II) bound to two N,O-bidentate ligands with a distorted tetrahedral coordination sphere; 4 involves Co(III) bound to three N,O-bidentate ligands in a mer-N(3)O(3) distorted octahedral geometry. [Co(II)((R)L)(2)](R = Ph or PhOMe) undergo two, one-electron, oxidations. The products of the first oxidation, [1](+) and [2](+), have been synthesised by the chemical oxidation of 1 and 2, respectively; these cations, formulated as [Co(II)((R)L*)((R)L)(2)](+), comprise one phenoxyl radical and one phenolate ligand bound to Co(II) and are the first phenoxyl radical ligand complexes of tetra-coordinated Co(II). 4 undergoes two, one-electron, ligand-based oxidations, the first of which produces [4](+), [Co(III)((Bz)L*)((Bz)L)(2)](+). Unlike [1](+) and [2](+), product of the one-electron oxidation of [Co(II)((Bz)L)(2)], [3](+), is unstable and decomposes to produce [4](+). These studies have demonstrated that the chemical properties of [M(II)((R)L*)((R)L)(2)](+)(M = Co, Cu, Zn) are highly dependent on the nature of both the ligand and the metal centre.  相似文献   

3.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

4.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

5.
Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and M?ssbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).  相似文献   

6.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

7.
In the reaction of organic monocationic chlorides or coordinatively saturated metal-ligand complex chlorides with linear, neutral Hg(CN)(2) building blocks, the Lewis-acidic Hg(CN)(2) moieties accept the chloride ligands to form mercury cyanide/chloride double salt anions that in several cases form infinite 1-D and 2-D arrays. Thus, [PPN][Hg(CN)(2)Cl].H(2)O (1), [(n)Bu(4)N][Hg(CN)(2)Cl].0.5 H(2)O (2), and [Ni(terpy)(2)][Hg(CN)(2)Cl](2) (4) contain [Hg(CN)(2)Cl](2)(2-) anionic dimers ([PPN]Cl = bis(triphenylphosphoranylidene)ammonium chloride, [(n)Bu(4)N]Cl = tetrabutylammonium chloride, terpy = 2,2':6',6' '-terpyridine). [Cu(en)(2)][Hg(CN)(2)Cl](2) (5) is composed of alternating 1-D chloride-bridged [Hg(CN)(2)Cl](n)(n-) ladders and cationic columns of [Cu(en)(2)](2+) (en = ethylenediamine). When [Co(en)(3)]Cl(3) is reacted with 3 equiv of Hg(CN)(2), 1-D [[Hg(CN)(2)](2)Cl](n)(n-) ribbons and [Hg(CN)(2)Cl(2)](2-) moieties are formed; both form hydrogen bonds to [Co(en)(3)](3+) cations, yielding [Co(en)(3)][Hg(CN)(2)Cl(2)][[Hg(CN)(2)](2)Cl] (6). In [Co(NH(3))(6)](2)[Hg(CN)(2)](5)Cl(6).2H(2)O (7), [Co(NH(3))(6)](3+) cations and water molecules are sandwiched between chloride-bridged 2-D anionic [[Hg(CN)(2)](5)Cl(6)](n)(6n-) layers, which contain square cavities. The presence (or absence), number, and profile of hydrogen bond donor sites of the transition metal amine ligands were observed to strongly influence the structural motif and dimensionality adopted by the anionic double salt complex anions, while cation shape and cation charge had little effect. (199)Hg chemical shift tensors and (1)J((13)C,(199)Hg) values measured in selected compounds reveal that the NMR properties are dominated by the Hg(CN)(2) moiety, with little influence from the chloride bonding characteristics. delta(iso)((13)CN) values in the isolated dimers are remarkably sensitive to the local geometry.  相似文献   

8.
In methanol or chloroform/methanol solutions, reactions of Cltpy or MeOtpy (Rtpy = 4'-R-2,2':6',2'-terpyridine) with CoX(2)·xH(2)O (X(-) = Cl(-), [OAc](-), [NO(3)](-) or [BF(4)](-)) result in the formation of equilibrium mixtures of [Co(Rtpy)(2)](2+) and [Co(Rtpy)X(2)]. A study of the solution speciation has been carried out using (1)H NMR spectroscopy, aided by the dispersion of signals in the paramagnetically shifted spectra; on going from a low- to high-spin cobalt(II) complex, proton H(6) of the tpy ligand undergoes a significant shift to higher frequency. For R = Cl and X(-) = [OAc](-), increasing the amount of CD(3)OD in the CD(3)OD/CDCl(3) solvent mixture affects both the relative proportions of [Co(Cltpy)(2)](2+) and [Co(Cltpy)(OAc)(2)] and the chemical shifts of the (1)H NMR resonances arising from [Co(Cltpy)(OAc)(2)]. When the solvent is essentially CDCl(3), the favoured species is [Co(Cltpy)(OAc)(2)]. For the 4'-methoxy-2,2':6',2'-terpyridine, the speciation of mono- and bis(terpyridine)cobalt(II) complexes depends upon the anion, solvent and ligand:Co(2+) ion ratio. The (1)H NMR spectrum of [Co(MeOtpy)(2)](2+) is virtually independent of anion and solvent. In contrast, the signals arising from [Co(MeOtpy)X(2)] depend on the anion and solvent. In the case of X(-) = [BF(4)](-), we propose that the mono(tpy) complex formed in solution is [Co(MeOtpy)L(n)](2+) (L = H(2)O or solvent, n = 1-3). The formation of mono(tpy) species has been confirmed by the solid state structures of [Co(Cltpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(NO(3)-O)(2)(OH(2))] and [Co(MeOtpy)Cl(2)]. The single crystal structure of the cobalt(III) complex [Co(Cltpy)Cl(3)]·CHCl(3) is also reported.  相似文献   

9.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

10.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

11.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

12.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

13.
Synthetic Co(III) complexes containing N5 donor sets undergo glutathionylation to generate biomimetic species of glutathionylcobalamin (GSCbl), an important form of cobalamin (Cbl) found in nature. For this study, a new Co(III) complex was synthesized derived from the polypyridyl pentadentate N5 ligand N4PyCO(2)Me (1). The compound [Co(N4PyCO(2)Me)Cl]Cl(2) (3) was characterized by X-ray crystallography, UV-vis, IR, (1)H NMR, and (13)C NMR spectroscopies and mass spectrometry (HRMS). Reaction of 3 with glutathione (GSH) in H(2)O generates the biomimetic species [Co(N4PyCO(2)Me)(SG)](2+) (5), which was generated in situ and characterized by UV-vis and (1)H NMR spectroscopies and HRMS. (1)H NMR and UV-vis spectroscopic data are consistent with ligation of the cysteine thiolate of GSH to the Co(III) center of 5, as occurs in GSCbl. Kinetic analysis indicated that the substitution of chloride by GS(-) occurs by a second-order process [k(1) = (10.1 ± 0.7) × 10(-2) M(-1) s(-1)]. The observed equilibrium constant for formation of 5 (K(obs) = 870 ± 50 M(-1)) is about 3 orders of magnitude smaller than for GSCbl. Reaction of the Co(III) complex [Co(Bn-CDPy3)Cl]Cl(2) (4) with GSH generates glutathionylated species [Co(Bn-CDPy3)(GS)](2+) (6), analogous to 5. Glutathionylation of 4 occurs at a similar rate [k(2) = (8.4 ± 0.5) × 10(-2) M(-1) s(-1)], and the observed equilibrium constant (K(obs) = 740 ± 47 M(-1)) is slightly smaller than for 5. Glutathionylation showed a significant pH dependence, where rates increased with pH. Taken together, these results suggest that glutathionylation is a general reaction for Co(III) complexes related to Cbl.  相似文献   

14.
The synthesis and characterization of the bis(bidentate) Schiff-base ligand [(R)-2] formed by the condensation reaction of (R)-1,1'-binaphthyl-2,2'-diamine [(R)-BINAM] with pyridine-2-carboxaldehyde is presented. The coordination chemistry of (R)-2 with Ni(ClO(4))(2).6H(2)O, Co(ClO(4))(2).6H(2)O, CuCl(2), and CuSO(4) has been investigated. Reaction of (R)-2 with the first two metal salts leads to complexes of the type [M((R)-4)(2)](ClO(4))(2) (M = Ni(II), Co(II)), where (R)-4 is a tridentate ligand resulting from the hydrolytic cleavage of one of the pyridyl groups from (R)-2. Both complexes were characterized by X-ray crystallography, which showed that the Lambda absolute configuration of the metal center is favored in both cases. (1)H NMR spectroscopy suggests that the high diastereoselectivity of Lambda-[Co((R)-4)(2)](ClO(4))(2) is maintained in solution. The reaction of (R)-2 with CuCl(2) leads to the dinuclear complex [Cu(2)((R)-2)Cl(4)], which has a [Cu(2)(mu(2)-Cl(2))] core. The reaction of CuSO(4) with (R)-2 gives a dimeric complex, [Cu((R)-4)SO(4)](2), which features a [Cu(2)(mu(2)-(SO(4))(2))] core. This complex can be prepared directly by the reaction of (R)-BINAM with pyridine-2-carboxaldehyde and CuSO(4). The use of rac-BINAM in this synthetic procedure leads to the heterochiral dimer [Cu(2)((R)-4)((S)-4)(SO(4))(2)]; that is, the ligands undergo a self-sorting (self/nonself discrimination) process based on chirality. The reaction of rac-BINAM, pyridine-2-carboxaldehyde, and Co(ClO(4))(2).6H(2)O proceeds via a homochiral self-sorting pathway to produce a racemic mixture of [Co((R)-4)(2)](2+) and [Co((S)-4)(2)](2+). The variable-temperature magnetic susceptibilities of the bimetallic complexes [Cu(2)((R)-2)Cl(4)], [Cu((R)-4)(mu(2)-SO(4))](2), and [Cu(2)((R)-4)((S)-4)(mu(2)-SO(4))(2)] all show weak antiferromagnetic coupling with J = -1.0, -0.40, and -0.67 cm(-)(1), respectively.  相似文献   

15.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

16.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

17.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

18.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

19.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

20.
A coordinatively saturated ruthenium(II) complex having tetradentate tris(2-pyridylmethyl)amine (TPA) and bidentate 2,2'-bipyridine (bpy), [Ru(TPA)(bpy)](2+) (1), was oxidized by a Ce(IV) ion in H(2)O to afford a Ru(IV)-oxo complex, [Ru(O)(H(+)TPA)(bpy)](3+) (2). The crystal structure of the Ru(IV)-oxo complex 2 was determined by X-ray crystallography. In 2, the TPA ligand partially dissociates to be in a facial tridentate fashion and the uncoordinated pyridine moiety is protonated. The spin state of 2, which showed paramagnetically shifted NMR signals in the range of 60 to -20 ppm, was determined to be an intermediate spin (S = 1) by the Evans' method with (1)H NMR spectroscopy in acetone-d(6). The reaction of 2 with various oraganic substrates in acetonitrile at room temperature afforded oxidized and oxygenated products and a solvent-bound complex, [Ru(H(+)TPA)(bpy)(CH(3)CN)], which is intact in the presence of alcohols. The oxygenation reaction of saturated C-H bonds with 2 proceeds by two-step processes: the hydrogen abstraction with 2, followed by the dissociation of the alcohol products from the oxygen-rebound complexes, Ru(III)-alkoxo complexes, which were successfully detected by ESI-MS spectrometry. The kinetic isotope effects in the first step for the reaction of dihydroanthrathene (DHA) and cumene with 2 were determined to be 49 and 12, respectively. The second-order rate constants of C-H oxygenation in the first step exhibited a linear correlation with bond dissociation energies of the C-H bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号