首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (μ-S(CH(2))(3)S)Fe(2)(CO)(4)(PMe(3))(2) has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.  相似文献   

2.
Diiron model complexes (μ-pdt)Fe2(CO)5L with L = pyridine ligands, e.g. py (A), etpy (B), btpy (C), were synthesized as active site analogues of [FeFe] hydrogenase, and characterized by X-ray crystallography and electrochemistry. Pyridine-N ligation was found to be able to tune the redox properties of the diiron centers of model complexes.  相似文献   

3.
A novel molecular triad [FeFe]-H(2)ase 1, and its model complexes 2 and 3 have been successfully constructed. The multistep PET and long-lived Fe(i)Fe(0) species were found to be responsible for the better performance of triad 1 than that of 2 with 3 for light-driven H(2) evolution.  相似文献   

4.
The active site for hydrogen production in [FeFe] hydrogenase comprises a diiron unit. Bioinorganic chemistry has modeled important features of this center, aiming at mechanistic understanding and the development of novel catalysts. However, new assays are required for analyzing the effects of ligand variations at the metal ions. By high-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection (XAS/XES = XAES) and density functional theory (DFT), we studied an asymmetrically coordinated [FeFe] model complex, [(CO)(3)Fe(I)1-(bdtCl(2))-Fe(I)2(CO)(Ph(2)P-CH(2)-NCH(3)-CH(2)-PPh(2))] (1, bdt = benzene-1,2-dithiolate), in comparison to iron-carbonyl references. Kβ emission spectra (Kβ(1,3), Kβ') revealed the absence of unpaired spins and the low-spin character for both Fe ions in 1. In a series of low-spin iron compounds, the Kβ(1,3) energy did not reflect the formal iron oxidation state, but it decreases with increasing ligand field strength due to shorter iron-ligand bonds, following the spectrochemical series. The intensity of the valence-to-core transitions (Kβ(2,5)) decreases for increasing Fe-ligand bond length, certain emission peaks allow counting of Fe-CO bonds, and even molecular orbitals (MOs) located on the metal-bridging bdt group of 1 contribute to the spectra. As deduced from 3d → 1s emission and 1s → 3d absorption spectra and supported by DFT, the HOMO-LUMO gap of 1 is about 2.8 eV. Kβ-detected XANES spectra in agreement with DFT revealed considerable electronic asymmetry in 1; the energies and occupancies of Fe-d dominated MOs resemble a square-pyramidal Fe(0) for Fe1 and an octahedral Fe(II) for Fe2. EXAFS spectra for various Kβ emission energies showed considerable site-selectivity; approximate structural parameters similar to the crystal structure could be determined for the two individual iron atoms of 1 in powder samples. These results suggest that metal site- and spin-selective XAES on [FeFe] hydrogenase protein and active site models may provide a powerful tool to study intermediates under reaction conditions.  相似文献   

5.
6.
There is growing interest in the development of hydrogenase mimics for solar fuel production. Here, we present a bioinspired mimic designed by anchoring a diiron hexacarbonyl cluster to a model helical peptide via an artificial dithiol amino acid. The [FeFe]-peptide complex catalyses photo-induced production of hydrogen in water.  相似文献   

7.
The IR carbonyl stretching frequencies of [Fe2(SRS)(CO)6] complexes correlate well with their first reduction potential; an [FeFe] hydrogenase model with a very mild reduction potential has been realized by using a strongly electron deficient carborane-dithiolate bridge.  相似文献   

8.
The ligand exchange reaction of IMe-(CH2)2-PPh2 (IMe = 1-methyimidazol-2-ylidene) and the hexacarbonyl complex [{Fe2{μ-S(CH2)3S}(CO)6] (1) resulted in the formation of the chelated complex [{Fe2{μ-S(CH2)3S}(CO)4(IMe-(CH2)2-PPh2)] (2). The molecular structure of 2 was confirmed by spectroscopic and X-ray analyses. This complex catalyzes proton reduction. Low temperature NMR studies on the protonation of 2 revealed the formation of a terminal hydride intermediate.  相似文献   

9.
10.
Gui  Ming-Sheng  Guan  Yu  Li  Yu-Long  Zhao  Pei-Hua 《Transition Metal Chemistry》2022,47(6):257-263
Transition Metal Chemistry - To further develop the active site mimics of azadithiolate-bridged [FeFe]-hydrogenases, a series of new diiron azadithiolate complexes...  相似文献   

11.
An N-heterocyclic carbene containing [FeFe]H(2)ase model complex, whose X-ray structure displays an apical carbene, shows an unexpected two-electron reduction to be involved in its electrocatalytic dihydrogen production. Density functional calculations show, in addition to a one-electron Fe-Fe reduction, that the aryl-substituted N-heterocyclic carbene can accept a second electron more readily than the Fe-Fe manifold. The juxtaposition of these two one-electron reductions resembles the [FeFe]H(2)ase active site with an FeFe di-iron unit joined to the electroactive 4Fe4S cluster.  相似文献   

12.
Model compounds have been found to structurally mimic the catalytic hydrogen-producing active site of Fe-Fe hydrogenases and are being explored as functional models. The time-dependent behavior of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) and Fe(2)(μ-S(2)C(2)H(4))(CO)(6) is reviewed and new ultrafast UV- and visible-excitation/IR-probe measurements of the carbonyl stretching region are presented. Ground-state and excited-state electronic and vibrational properties of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) were studied with density functional theory (DFT) calculations. For Fe(2)(μ-S(2)C(3)H(6))(CO)(6) excited with 266 nm, long-lived signals (τ = 3.7 ± 0.26 μs) are assigned to loss of a CO ligand. For 355 and 532 nm excitation, short-lived (τ = 150 ± 17 ps) bands are observed in addition to CO-loss product. Short-lived transient absorption intensities are smaller for 355 nm and much larger for 532 nm excitation and are assigned to a short-lived photoproduct resulting from excited electronic state structural reorganization of the Fe-Fe bond. Because these molecules are tethered by bridging disulfur ligands, this extended di-iron bond relaxes during the excited state decay. Interestingly, and perhaps fortuitously, the time-dependent DFT-optimized exited-state geometry of Fe(2)(μ-S(2)C(3)H(6))(CO)(6) with a semibridging CO is reminiscent of the geometry of the Fe(2)S(2) subcluster of the active site observed in Fe-Fe hydrogenase X-ray crystal structures. We suggest these wavelength-dependent excitation dynamics could significantly alter potential mechanisms for light-driven catalysis.  相似文献   

13.
We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H(+) to H(2) at a CaI turnover frequency of 380-900 s(-1) and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H(2). Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H(2) evolution by CaI. Production of H(2) by CdS:CaI was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H(2) production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H(2) production was limited by the rate of photon absorption (~1 ms(-1)) and not by the turnover of CaI. Complexes were capable of H(2) production for up to 4 h with a total turnover number of 10(6) before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.  相似文献   

14.
15.
In attempt to synthesize suitable [FeFe] hydrogenase model complexes, 2-methoxypropane-1,3-dithiole and 4-methyl-4-hydroxy-1,2-dithiolane were reacted with Fe3(CO)12 to give the respective complexes [Fe2(CO)6(H3COCH(CH2S)2)] and [Fe2(CO)6(HOC(CH3)(CH2S)2)]. The compounds were characterized by 1H and 13C NMR spectroscopy, mass spectrometry and elemental analysis. In addition, their electrochemical properties were investigated by cyclic voltammetry and compared with that of [Fe2(CO)6(HOC(CH2S)2)] known from literature.  相似文献   

16.
Combined with a simple water soluble [FeFe]-hydrogenase mimic 1, Ru(bpy)(3)(2+) and ascorbic acid enable hydrogen production photocatalytically. More than 88 equivalents of H(2) were achieved in water, which is much better than that obtained in an organic solvent or a mixture of organic solvent and water.  相似文献   

17.
Four diiron dithiolate complexes containing ortho-acylamino-functionalized arenethiolato ligands, [(micro-S-2-RCONHC6H4)2Fe2(CO)6] (R = CH3, 1; CF3, 2; C6H5, 3; 4-FC6H4, 4), were synthesized and well characterized as biomimetic models of the Fe-Fe hydrogenase active site. The molecular structures of and 4 were determined by X-ray crystallography. The intra-ligand NHS hydrogen bonds were studied by the X-ray analysis and by the (1)H NMR spectroscopy. The contribution of the NHS hydrogen bonds to the reduction potentials of complexes was investigated by electrochemistry. The first reduction potentials of complexes exhibit large positive shifts, that is, 220-320 mV in comparison to that of the analogous complex [(micro-SPh)2Fe2(CO)6] and 370-470 mV to that of [(micro-pdt)2Fe2(CO)6] (pdt = propane-1,3-dithiolato). Complex is capable of electrocatalysing proton reduction of acetic acid at relatively low overpotential (ca. 0.2 V) in acetonitrile.  相似文献   

18.
19.
Models for the oxidized form of the FeFe hydrogenase active site have been prepared. These cationic complexes contain two iron atoms, carbonyl ligands, a propanedithiolate bridge, and one other bridging group. Reduction of these complexes with hydrogen gas is demonstrated.  相似文献   

20.
Liu YC  Yen TH  Tseng YJ  Hu CH  Lee GH  Chiang MH 《Inorganic chemistry》2012,51(11):5997-5999
Attachment of the redox-active C(60)(H)PPh(2) group modulates the electronic structure of the Fe(2) core in [(μ-bdt)Fe(2)(CO)(5)(C(60)(H)PPh(2))]. The neutral complex is characterized by X-ray crystallography, IR, NMR spectroscopy, and cyclic voltammetry. When it is reduced by one electron, the spectroscopic and density functional theory results indicate that the Fe(2) core is partially spin-populated. In the doubly reduced species, extensive electron communication occurs between the reduced fullerene unit and the Fe(2) centers as displayed in the spin-density plot. The results suggest that the [4Fe4S] cluster within the H cluster provides an essential role in terms of the electronic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号