首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete sequence of steps of a tentative catalytic cycle for intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical cationic [Cp(2)ZrCH(3)](+) zirconocene precatalyst (2) has been examined by employing a gradient-corrected DFT method. The predicted smooth overall reaction energy profile is consistent with the available experimental data, thereby providing further confidence in the proposed mechanism. Following activation of the precatalyst by protonolytic cleavage of the Zr-Me bond, the catalytically active amidoallene-Zr complex undergoes addition of an allenic C[double bond, length as m-dash]C linkage across the Zr-N sigma-bond. The alternative exo- and endocyclic pathways show similar probabilities for the sterically less encumbered reactants {1 + 2} investigated herein. However, steric factors are expected to exert control on the regioselectivity of ring closure. On the other hand, the metathesis-type transition states for subsequent protonolysis are indicated to be less sensitive to steric demands. Formation of the six-membered azacycle-Zr intermediate through intramolecular C[double bond, length as m-dash]C insertion into the Zr-N sigma-bond is predicted to be turnover limiting. The factors that govern the regioselectivity of the aminoallene IHC have been elucidated.  相似文献   

2.
With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.  相似文献   

3.
A theoretical study of the Michael-type addition of 1,3-dicarbonyl compounds to α,β-unsaturated carbonyl compounds has been performed in the gas phase by means of the AM1 semiempirical method and by density functional theory (DFT) calculations within the B3LYP and M06-2X hybrid functionals. A molecular model has been selected to mimic the role of a base, which is traditionally used as a catalyst in Michael reactions, an acetate moiety to modulate its basicity, and point charges to imitate the stabilization of the negative charge developed in the substrate during the reaction when taking place in enzymatic environments. Results of the study of six different reactions obtained at the three different levels of calculations show that the reaction takes place in three steps: in the first step the α proton of the acetylacetone is abstracted by the base, then the nucleophilic attack on the β-carbon of the α,β-unsaturated carbonyl compound takes place generating the negatively charged enolate intermediate, and finally the product is formed through a proton transfer back from the protonated base. According to the energy profiles, the rate limiting step corresponds to the abstraction of the proton or the carbon-carbon bond formation step, depending on substituents of the substrates and method of calculation. The effect of the substituents on the acidity of the α proton of the acetylacetone and the steric hindrance can be analyzed by comparing these two separated steps. Moreover, the result of adding a positive charge close to the center that develops a negative charge during the reaction confirms the catalytic role of the oxyanion hole proposed in enzyme catalysed Michael-type additions. Stabilization of the intermediate implies, in agreement with the Hammond postulate, a reduction of the barrier of the carbon-carbon bond formation step. Our results can be used to predict the features that a new designed biocatalyst must present to efficiently accelerate this fundamental reaction in organic synthesis.  相似文献   

4.
This paper describes a tandem strategy to synthesize a series of new Fischer carbene complexes [(CO)(4)M[double bond, length as m-dash]C[N-(CH(2))(4)-]CH[double bond, length as m-dash]C(NRR')(SR'); M = Cr, W; R = Ar, R' = Me, -(CH(2))(2)-] with a thioimide or thiazoline fragment, in which the sulfur or nitrogen atom is coordinated to a metal center, depending on the nature of alkylating groups included as R'. We have trapped by protonation the proposed intermediate as the thioamide 12 [(CO)(5)W[double bond, length as m-dash]C[N-(CH(2))(4)-]CH(2)C(S)NHPh], which reveals the pathway of this reaction.  相似文献   

5.
As an efficient catalyst for asymmetric transfer hydrogenation reaction (ATH reaction) of α,β-unsaturated ketones, Rh-Cp-TsDPEN (Cp = 1,2,3,4,5-pentamethylcyclopenta-1,3-diene, TsDPEN = N-(p-toluenesulfonyl)-1,2-diphenyl- ethylenediamine) shows high chemoselectivity on CO and CC reduction. In our method, both CO and CC bonds in a variety of chromenone derivatives were reduced efficiently in aqueous media, resulting in at least 98% ee and up to 99% yields in a convenient way without further purification. The product was a useful intermediate for deriving chiral chroman-4-amine, which was reported as an effective agent against hypotension and inflammatory pain by inhibiting human bradykinin B1 receptor.  相似文献   

6.
Huiling Jiang  Huihong Xiao 《Tetrahedron》2007,63(10):2315-2319
1,3-Dipolar cycloaddition (1,3-DC) reaction of 4-ethoxy-1,1,1-trifluoro-3-buten-2-one 1 with nitrile oxides was studied. It was found that besides its CC participating in the formation of isoxazole rings, trifluoromethyl activated CO also underwent 1,3-DC reaction with nitrile oxides to afford 1,4,2-dioxazole rings. Single crystal diffraction analysis also evidenced the diheterocyclic configuration.  相似文献   

7.
[reaction: see text]. Beta-thioacetal-substituted aldehydes, which are conveniently prepared from the corresponding ynals, can be combined with a range of alkynes or electron-poor alkenes to deliver intermolecular hydroacylation adducts. The reactions employ [Rh(dppe)]ClO4 as a catalyst and are proposed to proceed via a chelated rhodium acyl intermediate. The thioacetal-containing products can be deprotected to the corresponding ketones or reduced to alkanes in good yields.  相似文献   

8.
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.  相似文献   

9.
Intermolecular hydroamination of vinylarenes and anilines was studied using zinc triflate as catalyst. NMR experiments supported a Lewis acid activation of the CC double bond. Electronic/steric effect study indicated that Lewis acidity of the catalyst as well as the coordination property of the amine were the governing factors for successful hydroamination of the substrates. More nucleophilic amine would bind more tightly to the central metal, leading to an unproductive coordination. Approach of bulky amine to CC bond would be hindered, and an alternative electrophilic substitution on benzene ring of the amine would become the major reaction. Electrophilic substitution would become predominant when strong electron-donating group is presented on aniline benzene ring.  相似文献   

10.
A series of S-hydrogen phosphorothioates have been converted to the corresponding S-trifluoromethyl derivatives upon reaction with the electrophilic trifluoromethylation reagent 1 (trifluoromethyl 1,3-dihydro-3,3-dimethyl-1,2-benziodoxole). Relative rate data were obtained by (19)F NMR monitoring of competition experiments and were evaluated by means of the Taft equation. A high positive polar sensitivity factor of 2.55 was found for electron-rich substrates and a negative one of -0.37 for electron-poor ones, implying the involvement of two different rate-determining steps. Furthermore, the reaction was found to be unaffected by steric factors.  相似文献   

11.
The [2 + 2] cycloaddition of monosubstituted acetylenes to ketene has been studied by ab initio(G2(MP2,SVP) and DFT (B3LYP/6-31Gd)) methods. The activation barrier decreases with increasing electron-donating ability of the acetylene substituent, and it can be roughly correlated with the energy of the acetylene HOMO. The addition to the C[double bond, length as m-dash]C bond of ketene (giving cyclobutenones) is preferred for the less electron-rich acetylenes, but for the most electron rich ones (X = NH(2) and NMe(2)) the addition to the C[double bond, length as m-dash]O bond (giving oxetes) becomes competitive, with activation barriers as low as ca. 45 (30) kJ mol(-1) for the two computational methods used. The cyclobutenones and oxetes can undergo ring opening to vinylketenes and acylallenes, respectively. Furthermore, the latter two compounds can interconvert by a 1,3-shift of the substituent X. The acylallenes become thermodynamically more stable than the vinylketenes for [small pi]-(lone pair) donating substituents X, and the 1,3-shift barrier also decreases, to ca. 130 kJ mol(-1) for X = NMe(2). In contrast, the 1,3-shifts of CH(3) and H have very high barriers.  相似文献   

12.
The novel three-component reaction of benzimidazole carbenes with isothiocyanates and allenoates proceeded efficiently in a highly site, regio-, and stereoselective manner to produce predominantly spiro[benzimidazoline-2,3′-tetrahydrothiophene] derivatives. The reaction was proposed to occur via a tandem nucleophilic addition of carbenes to isothiocyanates followed by an unusual [3+2] cycloaddition to the less activated carbon-carbon double bond of allenoates.  相似文献   

13.
The precise mechanism of the chiral phosphoric acid-catalyzed aldol-type reaction of azlactones with vinyl ethers was investigated. DFT calculations suggested that the reaction proceeds through a Conia-ene-type transition state consisting of the vinyl ether and the enol tautomer of the azlactone, in which the catalyst protonates the nitrogen atom of the azlactone to promote enol tautomerization. In addition, the phosphoryl oxygen of the catalyst interacts with the vinyl proton of the vinyl ether. The favorable transition structure features dicoordinating hydrogen bonds. However, these hydrogen bonds are not involved in the bond recombination sequence and hence the catalyst functions as a template for binding substrates. From the results of theoretical studies and experimental supports, the high enantioselectivity is induced by the steric repulsion between the azlactone substituent and the binaphthyl backbone of the catalyst under the catalyst template effect.  相似文献   

14.
The Perkow reaction of triethyl phosphite and β-alkoxyvinyl trihalogenomethyl ketones, which have common acyclic or cyclic structural fragment: -O-CC-C(O)CX2Cl, yielded dienyl phosphates: -O-CC-C[OP(O)(OEt)2]CX2 where X = F or Cl, whereas γ-bromo-β-methoxy-α,β-unsaturated trifluoromethyl ketone CF3C(O)CHC(OMe)CH2Br gave diene CF3C[OP(O)(OEt)2]CH-C(OMe)CH2.  相似文献   

15.
Two novel ruthenium-based olefin metathesis catalysts, H(2)ITap(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)ITapCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene), were synthesized bearing a pH-responsive NHC ligand with two aromatic NMe(2) groups. The crystal structures of complexes and were determined via X-ray crystallography. Both catalysts perform ring opening metathesis polymerization (ROMP) of cyclooctene (COE) at faster rates than their commercially available counterparts H(2)IMes(PCy(3))Cl(2)Ru[double bond, length as m-dash]CH-Ph and H(2)IMesCl(2)Ru[double bond, length as m-dash]CH-(C(6)H(4)-O-iPr) (H(2)IMes = 1,3-bis(2',4',6'-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) and perform at similar rates during ring closing metathesis (RCM) of diethyldiallylmalonate (DEDAM). Upon addition of 2 equiv. of HCl, catalyst is converted into a mixture of several mono and diprotonated Ru-carbene species 12' which are soluble in methanol but degrade within a few hours at room temperature. Catalyst can be protonated with 2 equiv. of HCl and the resulting complex is moderately water-soluble. The complex is stable in aqueous solution in air for >4 h, but over prolonged periods of time shows degradation in acidic media due to hydrolysis of the NHC-Ru bond. Catalysts and perform RCM of diallylmalonic acid in acidic protic media with only moderate activity at 50 degrees C and do not produce polymer in the ROMP of cationic 7-oxanorbornene derivative under the same conditions. Catalyst was used for Ru-seperation studies when RCM of DEDAM or 3,3-diallypentadione (DAP) was conducted in low-polar organic solution and the Ru-species was subsequently precipitated by addition of strong acid. The Ru-species were removed by (1) filtration and (2) filtration and subsequent extraction with water. The residual Ru-levels could be reduced to as far as 11 ppm (method 2) and 24 ppm (method 1) without the use of chromatography or other scavenging methods.  相似文献   

16.
Bis(2-pyridylimino)isoindolato (BPI) ligands, containing an alkynyl linker unit which allows their fixation to carbosilane dendrimers and dendrons, were synthesized by reaction of 4-nitrophthalodinitrile with 4-butynol giving the phthalodinitrile derivative containing the linker. These were subsequently reacted with two molar equivalents of 2-amino-4-methylpyridine and 2-amino-4-(t)butylpyridine yielding the respective BPI protioligands 2a and 2b. Lithiation with LDA and reaction with Si-Cl or Si-OTf (OTf=triflate) end groups in core or peripheral positions of dendritic carbosilanes gave the endodendrally and expdendrally functionalized dendrimers. Among these the first and second generation dendrimers [G-1](8-exo)-4-[C[triple bond, length as m-dash]CCH2CH2O]-10-MeBPI (8), [G-1]12-exo-4-[C[triple bond, length as m-dash]CCH2CH2O]-10-MeBPI (9) and [G-2](16-exo)-4-[C[triple bond, length as m-dash]CCH2CH2O]-10-MeBPI (10) were synthesized and fully characterized. The functional dendrimers were metallated by reaction with [(PhCN)2PdCl2] in dichloromethane to give the corresponding pallada-dendrimers.  相似文献   

17.
A highly selective and atom efficient ‘trifluoroacetic ester/ketone metathesis’ has been sincerely witnessed. Enolizable alkyl (at least two non-hydrogen atoms) aryl ketones were found to react readily with ethyl trifluoroacetate under the promotion of NaH to afford trifluoroacetic ester/ketone exchange products, trifluoromethyl ketones (TFMKs), and aromatic acid esters, which were quite different from the general Claisen condensation products, 1,3-diketones. The outcome of the reaction between ketone and ethyl trifluoroacetate is strongly related to the structures of substrates, the steric congestion caused by alkyl group is in favor of the C–C bond cleavage. DFT investigation further disclosed that the metathesis reaction was a kinetically favored pathway. Using only a slight excess of cheap trifluoromethylation reagent, simple operation and mild conditions make it a practical method for preparation of TFMKs on large scale, as well as a new choice of converting aryl alkyl ketones to aromatic acid esters.  相似文献   

18.
The 1-benzoxepine derivatives were synthesized conveniently by cationic palladium-catalyzed [5 + 2] annulation reaction of 2-acylmethoxyarylboronic acids with allenoates in high yields. This annulation involves the intramolecular nucleophilic addition to ketones without the formation of π-allylpalladium species.  相似文献   

19.
The ambient temperature reaction of the N-heterocyclic carbenes (NHCs) 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) with the triruthenium cluster [Ru(3)(CO)(12)], in a 3 : 1 stoichiometric ratio, results in homolytic cleavage of the cluster to quantitatively afford the complexes [Ru(CO)(4)(NHC)] (; NHC = IMes, ; NHC = IDipp). Reaction of the 2-thione or hydrochloride precursors to IMes, i.e. S[double bond, length as m-dash]IMes and IMes.HCl, with the same triruthenium cluster affords the complexes [Ru(4)(mu(4)-S)(2)(CO)(9)(IMes)(2)] () and [Ru(4)(mu(4)-S)(CO)(10)(IMes)(2)] () (3 : 1 and 2 : 1 reaction), and [{Ru(mu-Cl)(CO)(2)(IMes)}(2)] () (3 : 1 reaction) respectively. By contrast, the complex [Ru(3)(mu(3)-S)(2)(CO)(7)(IMeMe)(2)] (), where IMeMe is 1,3,4,5-tetramethylimidazol-2-ylidene, is the sole product of the 2 : 1 stoichiometric reaction of S[double bond, length as m-dash]IMeMe with [Ru(3)(CO)(12)]. Compounds -, and have been structurally characterised by single crystal X-ray diffraction.  相似文献   

20.
The mononuclear pentafluorophenyl platinum complex containing the chelated diphenylphosphinous acid/diphenylphosphinite system [Pt(C(6)F(5)){(PPh(2)O)(2)H}(PPh(2)OH)] 1 has been prepared and characterised. 1 and the related alkynyl complex [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)OH)] 2 form infinite one-dimensional chains in the solid state based on intermolecular O-H[dot dot dot]O hydrogen bonding interactions. Deprotonation reactions of [PtL{(PPh(2)O)(2)H}(PPh(2)OH)] (L = C(6)F(5), C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh 3) with [Tl(acac)] yields tetranuclear Pt(2)Tl(2) complexes [PtL{(PPh(2)O)(2)H}(PPh(2)O)Tl](2) (L = C(6)F(5) 4, C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh ). The structure of the tert-butylalkynyl derivative , established by X-ray diffraction, shows two anionic discrete units [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)O)](-) joined by two Tl(i) centres via Tl-O and Pt-Tl bonds. Despite the existence of Pt-Tl interactions, they do not show luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号