共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei Chen Xi Su Chuanzhe Wang Dr. Guang Zhang Dr. Ting Zhang Prof. Gang Xu Prof. Long Chen 《Angewandte Chemie (International ed. in English)》2023,62(40):e202306224
The emergence of two-dimensional conjugated metal–organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b′:10,11-b′′]tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g−1). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance. 相似文献
2.
点击化学具有反应条件温和、产率高、速率快、产物容易分离以及高度选择性等优点,成为国内外研究的热点之一。硫醇-烯/炔光化学反应作为新型高效的点击反应近年来备受关注,通过这种方法制备高性能及功能性聚合物材料也是新材料领域的前沿研究内容。本文综述了近年来硫醇-烯/炔点击化学在功能聚合物材料合成中的研究成果,详细介绍了硫醇-烯/炔点击化学的特点、优势及其反应机理,重点归纳了利用硫醇-烯/炔点击化学合成线型、超支化、交联等分子结构的功能聚合物材料的研究进展,并对由这种方法合成功能聚合物的单体特点、反应路线及产物应用进行了阐述,最后对硫醇-烯/炔点击化学的进一步应用前景做了展望。 相似文献
3.
Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction
Liqin Hao Shuping Jia Xueling Qiao En Lin Yi Yang Prof. Yao Chen Prof. Peng Cheng Prof. Zhenjie Zhang 《Angewandte Chemie (International ed. in English)》2023,62(6):e202217240
Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as −C=N−, −OH, −N=N− and −CF3) to improve the utilization efficiency and host–guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction. Upon loading with H3PO4, COFs can realize a proton conductivity of 2.33×10−2 S cm−1 under anhydrous conditions, among the highest values of all COF materials. These materials demonstrate good stability and maintain high proton conductivity over a wide temperature range (80–160 °C). This work paves a new way for designing COFs for anhydrous proton conduction applications, which shows great potential as high-temperature proton exchange membranes. 相似文献
4.
5.
6.
利用原子转移自由基聚合(ATRP)与点击反应相结合制备环状聚合物. 根据ATRP原理, 用含端炔的有机卤化物作为引发剂时, 产物的一端为炔基, 另一端则为卤素原子, 而卤素原子本身可作为叠氮化物的原料, 从而可利用点击反应使聚合物成环. 相似文献
7.
Yosuke Hara Kazuyoshi Kanamori Kazuki Nakanishi 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(52):19223-19229
We present a two‐step template‐free approach toward monolithic materials with controlled trimodal porous structures with macro‐, meso‐, and micropores. Our method relies on two ordering processes in discrete length scales: 1) Spontaneous formation of macroporous structures in monolithic materials by the sol–gel process through the short‐range ordered self‐assembly of metal–organic frameworks (MOFs), and 2) reorganization of the framework structures in a mediator solution. The Zr‐terephthalate‐based MOF (UiO‐66‐NH2) was adopted as a proof of concept. The self‐assembly‐induced phase separation process offered interconnected macropores with diameters ranging from 0.9 to 1.8 μm. The subsequent reorganization process converted the microporous structure from low crystalline framework to crystalline UiO‐66. The resultant mesopore size within the skeletons was controlled in the range from 9 to 21 nm. This approach provides a novel way of designing spaces from nano‐ to micrometer scale in network‐forming materials. 相似文献
8.
Jiahui Liu Prof. Dr. Guoying Zhao Dr. Ocean Cheung Lina Jia Prof. Dr. Zhenyu Sun Prof. Dr. Suojiang Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(38):9052-9059
The development of multifunctional heterogeneous catalysts with high porosity and remarkable catalytic activity still remains a challenge. Herein, four highly porous metalloporphyrin covalent ionic frameworks (CIFs) were synthesized by coupling 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (TNPP) with 3,8-diamino-6-phenylphenanithridine (NPPN) or 5,5′-diamino-2,2′-bipyridine (NBPy) followed by ionization with bromoethane (C2H5Br) or dibromoethane (C2H4Br2) and then metalization with Zn or Co. The resulting CIFs showed high efficiency in catalyzing the cycloaddition of propylene oxide (PO) with CO2 to form propylene carbonate (PC). All of the Zn-containing CIF catalysts were able to catalyze the cycloaddition reaction with a PC yield greater than 97 %. The TNPP/NBPy (CIF2) catalyst ionized with C2H4Br2 and metalized with Zn (Zn-CIF2-C2H4) exhibited the highest catalytic activity among the synthesized catalysts. The high catalytic performance of Zn-CIF2-C2H4 is related to its high porosity (577 m2 g−1), high Br:metal ratio (1:3.89), and excellent synergistic action between the Lewis acidic Zn sites and the nucleophilic Br− ions. Zn-CIF2-C2H4 is sufficiently stable that greater than 94 % PC yield could be obtained even after six cycles. In addition, Zn-CIF2-C2H4 could catalyze the cycloaddition of several other epoxides with CO2. These highly porous materials are promising multifunctional and efficient catalysts for industrially relevant reactions. 相似文献
9.
Guo‐Dong Fu Hua Jiang Fang Yao Li‐Qun Xu Jun Ling En‐Tang Kang 《Macromolecular rapid communications》2012,33(18):1523-1527
Here, we are the first to report a novel approach to preparing well‐defined poly(ethylene glycol) (PEG) fluorescent nanogels, with well‐defined molecular structures and desired functionalities via reverse (mini)emulsion copper(I)‐catalyzed azide‐alkyne cycloaddition (REM‐CuAAC). Nanogels with hydroxyl groups and Ga‐porphyrin complex (Ga‐porphyrin‐OH nanogels), as well as with Ga‐porphyrin complex and folate functional groups (Ga‐porphyrin‐FA), are successfully prepared. Nanogels of 30 and 120 nm in diameter are obtained and they exhibit an emission maxima within the wavelength range 700–800 nm. The nanogels could find uses in near infrared (NIR) imaging attributable to their fluorescence and their functionality for cell affinity. 相似文献
10.
《Macromolecular rapid communications》2017,38(7)
It is a significant but challenging task to simultaneously reinforce and functionalize diene rubbers. Inspired by “sacrificial bonds”, the authors engineer sacrificial hydrogen bonds formed by pendent urazole groups in crosslinked solution‐polymerized styrene butadiene rubber (SSBR) via triazolinedione click chemistry. This post‐crosslinking modification reveals the effects of the sacrificial bonds based on a consistent covalent network. The “cage effect” of the pre‐crosslinked network facilitates the heterogeneous distribution of urazole groups, leading to the formation of hydrogen‐bonded multiplets. These multiplets further aggregate into clusters with vicinal trapped polymer segments that form microphase separation from the SSBR matrix with a low content of urazole groups. The clusters based on hydrogen bonds, serving as sacrificial bonds, promote energy dissipation, significantly improving the mechanical properties of the modified SSBR, and enable an additional wide transition temperature region above room temperature, which endows the modified SSBR with promising triple‐shape memory behavior.
11.
Chi-Xuan Yao Lu Dong Lu Yang Jin Wang Shi-Jie Li Huan Lv Xue-Meng Ji Jing-Min Liu Shuo Wang 《Molecules (Basel, Switzerland)》2022,27(7)
Functional nanoprobes which detect specific food hazards quickly and simply are still in high demand in the field of food-safety inspection research. In the present work, a dual-emission metal-organic framework-based ratiometric fluorescence probe was integrated to detect Cu2+ and Pb2+ with rapidness and ease. Specifically, quantum dots (QDs) and carbon quantum dots (CQDs) were successfully embedded into zeolitic imidazolate framework-67 (ZIF-67) to function as a novel ratiometric fluorescent sensing composite. The ratiometric fluorescence signal of CQDs/QDs@ZIF-67 was significantly aligned with the concentration of metal ions to give an extremely low detection limit of 0.3324 nM. The highly sensitive and selective CQDs/QDs@ZIF-67 composite showed potential for the rapid and cost-effective detection of two metal ions. 相似文献
12.
可逆加成-裂解链转移聚合(RAFT)由于单体适用面广、聚合条件温和、不受聚合方法的限制等特性, 已经成为活性合成聚合物的有效手段之一。点击化学(click chemistry)由于具有良好的选择性、模块性以及官能团耐受性等特点迅速成为许多研究领域,如药物、聚合物、功能材料等合成的有力工具,同时涌现出了多种基于巯基的点击反应。本文综述了近年来基于巯基的点击反应, 如巯基-烯、巯基-炔、巯基-异氰酸酯、巯基-环氧化物以及巯基-卤代烃等新型点击反应与RAFT聚合相结合在功能性聚合物的制备和修饰中的应用, 相信这两种手段的结合将在其中发挥积极的作用。 相似文献
13.
Krittamet Phothong Chaiyot Tangsathitkulchai Panuwat Lawtae 《Molecules (Basel, Switzerland)》2021,26(18)
Pore development and the formation of oxygen functional groups were studied for activated carbon prepared from bamboo (Bambusa bambos) using a two-step activation with CO2, as functions of carbonization temperature and activation conditions (time and temperature). Results show that activated carbon produced from bamboo contains mostly micropores in the pore size range of 0.65 to 1.4 nm. All porous properties of activated carbons increased with the increase in the activation temperature over the range from 850 to 950 °C, but decreased in the temperature range of 950 to 1000 °C, due principally to the merging of neighboring pores. The increase in the activation time also increased the porous properties linearly from 60 to 90 min, which then dropped from 90 to 120 min. It was found that the carbonization temperature played an important role in determining the number and distribution of active sites for CO2 gasification during the activation process. Empirical equations were proposed to conveniently predict all important porous properties of the prepared activated carbons in terms of carbonization temperature and activation conditions. Oxygen functional groups formed during the carbonization and activation steps of activated carbon synthesis and their contents were dependent on the preparation conditions employed. Using Boehm’s titration technique, only phenolic and carboxylic groups were detected for the acid functional groups in both the chars and activated carbons in varying amounts. Empirical correlations were also developed to estimate the total contents of the acid and basic groups in activated carbons in terms of the carbonization temperature, activation time and temperature. 相似文献
14.
Dr. Chunwei Dong Dr. Ren-Wu Huang Dr. Arunachalam Sagadevan Dr. Peng Yuan Dr. Luis Gutiérrez-Arzaluz Dr. Atanu Ghosh Saidkhodzha Nematulloev Badriah Alamer Prof. Dr. Omar F. Mohammed Prof. Dr. Irshad Hussain Prof. Dr. Magnus Rueping Prof. Dr. Osman M. Bakr 《Angewandte Chemie (International ed. in English)》2023,62(37):e202307140
Elucidating single-atom effects on the fundamental properties of nanoparticles is challenging because single-atom modifications are typically accompanied by appreciable changes to the overall particle's structure. Herein, we report the synthesis of a [Cu58H20PET36(PPh3)4]2+ ( Cu58 ; PET: phenylethanethiolate; PPh3: triphenylphosphine) nanocluster—an atomically precise nanoparticle—that can be transformed into the surface-defective analog [Cu57H20PET36(PPh3)4]+ ( Cu57 ). Both nanoclusters are virtually identical, with five concentric metal shells, save for one missing surface copper atom in Cu57 . Remarkably, the loss of this single surface atom drastically alters the reactivity of the nanocluster. In contrast to Cu58 , Cu57 shows promising activity for click chemistry, particularly photoinduced [3+2] azide-alkyne cycloaddition (AAC), which is attributed to the active catalytic site in Cu57 after the removal of one surface copper atom. Our study not only presents a unique system for uncovering the effect of a single-surface atom modification on nanoparticle properties but also showcases single-atom surface modification as a powerful means for designing nanoparticle catalysts. 相似文献
15.
用MP2方法,TZVPP基组以及基组重叠误差(BSSE)校正计算了氢分子与修饰在多孔芳香骨架(PAF)上的羧酸镁、羧酸钙官能团的相互作用,并建立了描述这一相互作用的分子力学力场.在此基础上用巨正则系综蒙特卡洛(GCMC)模拟预测了氢气在该种新型PAF材料上的吸附等温线.量子化学计算结果表明,每个羧酸镁、羧酸钙官能团分别可以提供13、14个氢分子吸附位点,与每个氢分子的平均结合能在8kJ·mol-1左右.通过比较不同温度和压力下材料的绝对吸附量和超额吸附量发现,在PAF骨架中引入羧酸镁、羧酸钙官能团可以显著提高材料的综合储氢性能,达到并超过了美国能源部提出的2015年储氢标准.同时该工作还揭示了氢吸附量与材料的表面积、空腔体积和分子作用强度间的复杂关系. 相似文献
16.
Palumbo Fabio Favia Pietro Rinaldi Annalisa Vulpio Michele d'Agostino Riccardo 《Plasmas and Polymers》1999,4(2-3):133-145
Organic thin films have been deposited onto various substrates by means of radiofrequency glow discharges fed with acrylic acid vapors. The effect of the experimental parameters on film composition has been investigated with X-ray Photoelectron and FT-IR spectroscopies; Optical Emission Spectroscopy has been carried out for plasma phase characterization. It is shown that the concentration of oxygen and carboxylic groups in the coating decreases with increasing power, while the concentration trend of CO species in the plasma increases. It is demonstrated that films deposited from acrylic acid, which can be used as functional layers for biomolecule immobilization, can be deposited with a controlled surface concentration of -COOH groups through a simple in situ monitoring of the deposition process. 相似文献
17.
可逆加成一断裂链转移(RAFT)聚合作为一种新型活性自由基聚合方法,由于其具有单体适用面广、聚合条件温和、不受聚合方法的限制等优点,已经成为聚合物分子设计的有效手段之一.点击化学(Click chaemistry)是近几年发展起来的一种快速合成的新方法,是指选用易得原料,通过可靠、高效而又具有选择性的化学反应来实现碳杂... 相似文献
18.
Xiaolin Yu Dr. Alexey A. Ryadun Dmitry I. Pavlov Dr. Tatiana Y. Guselnikova Dr. Andrei S. Potapov Vladimir P. Fedin 《Angewandte Chemie (International ed. in English)》2023,62(35):e202306680
Solvothermal reaction of 5,5′-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2O)3]∞ ( NIIC-1-Eu and NIIC-1-Tb ), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3−. The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60–90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-EuxTb1−x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers. 相似文献
19.
Anaïs Giustiniani Philippe Gugan Manon Marchand Christophe Poulard Wiebke Drenckhan 《Macromolecular rapid communications》2016,37(18):1527-1532
Macrocellular silicone polymers are obtained after solidification of the continuous phase of a poly(dimethylsiloxane) emulsion, which contains poly(ethylene glycol) drops of sub‐millimetric dimensions. Coalescence of the liquid template emulsion is prohibited by a reactive blending approach. The relationship is investigated in detail between the interfacial properties and the emulsion stability, and micro‐ and millifluidic techniques are used to generate macrocellular polymers with controlled structural properties over a wider range of cell sizes (0.2–2 mm) and volume fractions of the continuous phase (0.1%–40%). This approach could easily be transferred to a wide range of polymeric systems.
20.
Pressly ED Amir RJ Hawker CJ 《Journal of polymer science. Part A, Polymer chemistry》2011,49(3):814-819
A new method for the rapid and efficient coupling of homopolymers to yield di- and triblock copolymers as well as cyclic polymers using the 3 + 2 π Huisgen copper catalyzed cyclo-addition reaction has been developed. This facile method utilizes commercially available Cu nanoparticles that are tolerant to O(2), easily removable and recyclable. 相似文献