首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Oxidative–reductive and antioxidant properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, and 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin in their reaction with the 2,2-diphenyl-1-picrylhydrazile free radical are studied. Two of the three abovelisted compounds, namely, 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin, were found to possess antioxidant activity, the former’s antioxidant activity being higher, while 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin showed no antioxidant properties. A probable mechanism of antioxidant activity of the studied porphyrins involves hydrogen homolytic detachment from functional substituent in phenyl ring and the hydrogen radical interaction with 2,2-diphenyl-1-picrylhydrazile.  相似文献   

2.
In the present work, the preparation of a new organic-inorganic hybrid material in which tetrakis(p-aminophenylporphyrin) is covalently linked to a Lindqvist structure of polyoxometalate, is reported. This new porphyrin-polyoxometalate hybrid material was characterized by (1)H NMR, FT-IR and UV-Vis spectroscopic methods and cyclic voltammetry. These spectro- and electrochemical studies provided spectral data of the synthesis of this compound. Cyclic voltammetry showed the influence of the porphyrin on the redox process of the polyoxometalate. The catalytic activity of this hybrid material was investigated in the alkene epoxidation with NaIO(4).  相似文献   

3.
The basicity of the symmetrical and unsymmetrical tetraphenylporphyrins, namely 5,10,15,20-tetraphenylporphyrin (I) (references), 5-(4-nitrophenyl)-10,15,20-triphenylporphyrin (II), a mixture of 5,10-bis(4-nitrophenyl)-15,20-diphenylporphyrin and 5,15-bis(4-nitrophenyl)-10,20-diphenylporphyrin (III), 5,10,15-tris(4-nitrophenyl)-20-phenylporphyrin (IV), 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (V), 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (VI), a mixture of 5,10-bis(4-aminophenyl)-15,20-diphenylporphyrin and 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin (VII), 5,10,15-tris(4-aminophenyl)-20-phenylporphyrin (VIII) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (IX), was investigated potentiometrically in nitrobenzene solvent. This investigation showed that these compounds are basic rather than acidic. Although they can not be titrated even with tetrabuthylammonium hydroxide, they can easily be titrated with perchloric acid to give well shaped and stoichiometric end-points. In addition they all undergo two proton reactions per porphyrin molecule. However, compounds VI, VII, VIII and IX each shows a second end-point to give three, four, five and six proton reactions, respectively, per porphyrin molecule. Half neutralization potentials (measures of their basicity) of these compounds are: I=368, II=409, III=432, IV=461, V=520, VI=340, VII=302, VIII=238 and IX=225 mV versus Ag/AgCl in methanol. These potentials clearly indicate that, if para-hydrogen with respect to the porphyrin core of tetraphenylporphyrin (I) is replaced with an acidifying nitro group (II, III, IV and V) the basicity of I decreases. This decrease is approximately proportional to the number of nitro groups. Each nitro group decreases the half neutralization potential by about 35 mV. On the other hand, if para-hydrogen indicated above is replaced with a basifying amino group (VI, VII, VIII and IX) the basicity increases. This increase is also approximately proportional to the number of amino groups. Each amino group increases the half neutralization potential by about 36.7 mV. The values 35 and 36.7 mV indicate that in nitrobenzene solvent the electron releasing power of an amino group to the porphyrin system is a little stronger than the electron withdrawing power of a nitro group from the porphyrin system. All these observations reveal that the nitrogen atoms at the core of the porphyrin molecules are strongly influenced by changes at the periphery of the molecules, which is a very good indication that the substituted phenyl groups and the cores of the porphyrins are nearly in the same plane.  相似文献   

4.
Eight 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]chlorins were synthesized by means of the Whitlock method with diimide reduction and purified by reversed-phase thin layer chromatography (RP-TLC). All compounds were characterized by (1)H NMR spectroscopy, electron-spray ionization time-of-flight mass spectrometry (ESI-TOF MS), and UV-Vis spectroscopy. ESI-TOF MS could detect the 2H difference in molecular weight between a glycoconjugated chlorin and its corresponding porphyrin (i.e., 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]porphyrin). The cellular uptake of the eight chlorins was evaluated in HeLa cells. All glycoconjugated chlorins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin showed 50-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin, 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin and TPPS towards HeLa cells was examined at the concentration of 2x10(-7) M (mol/dm(3)). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity decreased in the order of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin>5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin>TPPS. The results indicate that the photocytotoxicity is not related simply to cellular uptake.  相似文献   

5.
微波辅助合成了取代席夫碱铜金属卟啉。 实验结果表明,取代苯甲醛与四(对氨基苯基)铜金属卟啉的缩合反应速率和产率与芳香醛取代基的种类有关,含吸电子基团的芳香醛大于含给电子基团的芳香醛,且随吸电子性的增强而增加,随给电子性的增强而减少。 水杨醛席夫碱铜金属卟啉侧链可与铜离子在碱性条件下形成铜配合物,其催化氧化环己烷的转化率达到了7.68%,环己酮的选择性达到了60.87%。  相似文献   

6.
Yang  Ankang  Xue  Ying  Zhao  Hong  Li  Xiangjun  Yuan  Zhuobin 《Mikrochimica acta》2015,182(1-2):341-349
Microchimica Acta - We reported on the one-pot synthesis of a ternary hybrid material composed of graphene functionalized with 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin, tin oxide, and gold...  相似文献   

7.
The catalytic activity and stability of anionic cobalt(II) porphyrin complexes: 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinatocobalt(II), 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) and the cationic cobalt(II) porphyrin: 5,10,15,20-tetrakis[4-(diethylmethylammonio)phenyl]porphyrinatocobalt(II) tertraiodide have been investigated in the oxidation of 2-mercaptoethanol by dioxygen. All complexes were efficient catalysts for the auto-oxidation of 2-mercaptoethanol. The cationic cobalt(II) porphyrin has been found to be the most reactive catalyst. The rate of auto-oxidation of 2-mercaptoethanol catalysed by 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) has been found to increase with increasing the pH from 7 to 9 then decreased at higher pH. The rate constants of auto-oxidation reaction showed linear dependence on catalyst concentration and saturation kinetics in both 2-mercaptoethanol concentrations and dioxygen pressure. Anionic cobalt(II) porphyrin complexes showed higher stability than the cationic catalyst in repeat oxidation reactions. Immobilizing the anionic catalysts on ion exchange resin and supporting the cationic catalyst on clay mineral montmorillonite improved their stabilities towards oxidation.  相似文献   

8.
Basic and coordination properties of 5,10,15,20-tetrakis(3,5-dibromophenyl)porphine and 5,10,15,20-tetrakis(4-methoxy-3-bromophenyl)porphine in acetonitrile have been investigated by means of spectrophotometry. The optimization of the geometry parameters of polysubstituted porphyrins has been performed using quantum-chemical method (РМ3). The relationship between geometric structure of the studied porphyrins and their coordination, basic, and spectral properties is discussed.  相似文献   

9.
The free-radical polymerization of methyl methacrylate in the presence of chlorine-containing complexes of Fe(III) with 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin and 5,10,15,20-tetrakis(3′-butoxyphenyl)porphyrin, as well as in the presence of the acetate complex of Co(III) 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin, has been investigated. The kinetic features of the process and the molecular mass characteristics of polymers are studied, and a feasible polymerization mechanism is proposed.  相似文献   

10.
Three kinds of biomimetic heme precursors have been prepared. The first type is based on tetra-aminoporphyrins: either 5,10,15,20-tetrakis (o-aminophenyl)porphyrin (various atropoisomers), or 5,15-bis(2′,6′-diaminophenyl)porphyrin. The second type is based on octa-aminoporphyrins: 5,10,15,20-tetrakis (2′,6′-diamino-4′-tert-butylphenyl)porphyrin. One example of “basket handle” porphyrin demonstrates selective discrimination between O2 and CO with an M value [M=p1/2(O2)/p1/2(CO)] of 105. This is similar to values reported for various natural hemoproteins. The third type is based on aminoporphyrin templates [5, 5,10- or 5,15- and 5,10,15-(2′,6′-dinitro,4′-tert-butylphenyl)porphyrins] which have been tested in asymmetric epoxidation.  相似文献   

11.
Adlayers of cobalt(II) 5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-2-pivalamidophenyl)porphyrin (CoTpivPP) were prepared by immersing either Au(111) or Au(100) substrate in a benzene solution containing CoTpivPP molecules, and they were investigated in 0.1 M HClO4 and 0.1 M H2SO4 by cyclic voltammetry and in situ scanning tunneling microscopy (STM). The adlayer structure and electrochemical properties of CoTpivPP are compared to those of 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP). Characteristic nanobelt arrays consisting of CoTpivPP molecules were produced on both Au(111) and Au(100) surfaces. The stability of the nanobelt arrays was controlled by manipulating the electrode potential. On the other hand, the formation of nanobelt arrays consisting of O2-adducted CoTpivPP molecules depended upon the crystallographic orientation of Au. The state of O2 trapped in the cavity of CoTpivPP was distinctly observed in STM images as a bright spot in the nanobelt array formed on reconstructed Au(100)-(hex) surface, but not on Au(111) surface. This result suggests that the arrangement of underlying Au atoms plays an important role in the formation of nanobelt arrays with the sixth ligand coordination.  相似文献   

12.
Molecular imprinting inside dendrimers   总被引:1,自引:0,他引:1  
Synthetic hosts capable of binding porphyrins have been produced by a mixed-covalent-noncovalent imprinting process wherein a single binding site is created within cross-linked dendrimers. Two synthetic hosts were prepared, using as templates 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(3,5-dihydroxyphenyl)porphyrin. These two templates were esterified with, respectively, fourth- and third-generation Fréchet-type dendrons containing homoallyl end-groups. The resulting tetra- and octadendron macromolecules underwent the ring-closing metathesis reaction using Grubbs' Type I catalyst, RuCl(2)(P(C(6)H(5))(3))(2)(CHCH(2)C(6)H(5)), to give extensive interdendron cross-linking. Hydrolytic removal of the porphyrin cores afforded imprinted hosts whose ability to bind porphyrins with various peripheral substituents was investigated by UV-visible spectrophotometric titrations and size exclusion chromatography. The results indicate a high yield of imprinted sites that show high selectivity for binding of porphyrins capable of making at least four hydrogen bonds, but only a moderate degree of shape selectivity.  相似文献   

13.
The boron trifluoride-catalyzed Rothemund condensations of phenylpropargylaldehyde with 4,7-dihydro-4,7-ethano-2H-isoindole or 3,4-diethylpyrrole in dichloromethane at low temperature give 5,10,15,20-tetrakis(phenylethynyl)porphyrins bearing bicyclo[2.2.2]octadiene and octaethyl substituents, respectively. The former undergoes a retro Diels-Alder reaction to afford 5,10,15,20-tetrakis(phenylethynyl)benzoporphyrin quantitatively. The different conformations of the porphyrin periphery were determined by X-ray diffraction and their redox and spectroscopic properties have been investigated.  相似文献   

14.
Synthesis of Glucoside Bonded Metal Porphyrins   总被引:1,自引:0,他引:1  
Enzyme catalyzed reaction often has high selectivity and efficiency under mild conditions. However, disadvantage of enzyme catalysts is the difficulty of recovery. Metalloporphyrin plays an important role in biological system such as redox reaction, electron transfer,oxygen transportation and charge separation etc.1,2 Metalloporphyrins as superoxide dismutase (SOD) mimics have showed the ability of catalyzing the redox reaction of some harmful radicals , such as O2·―, ·OH. Grove and co-…  相似文献   

15.
《Polyhedron》2007,26(9-11):2309-2312
The magnetic property of a one-dimensional magnetic chain, 5,10,15,20-tetrakis(4-bromophenyl)porphyrinatomanganese(III) tetracyanoethenide ([MnTBrPP]+[TCNE]), is investigated by using model complexes and ab initio calculations. In these models, MnTBrPP is reduced to a manganese porphyrin complex (MnP). The spin-polarized density functional theory (UDFT) and the hybrid UDFT were used to calculate the complexes, and Pederson’s scheme was used to calculate their zero-field splitting (ZFS) parameters. We found from the model calculations that the TCNE coordination hardly affects the magnetic anisotropy of MnP.  相似文献   

16.
2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin has been synthesized, and its acid-base and complexing properties in the systems 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile, acetonitrile-Zn(OAc)2, and 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile-Zn(OAc)2 have been studied by spectrophotometry. Titration of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with 1,8-diazabicyclo[5.4.0]undec-7-ene is accompanied by successive deprotonation of the pyrrole nitrogen atoms with formation of the corresponding mono- and dianion. The overall acid dissociation constant of the title compound has been determined. The complexation of neutral and doubly deprotonated 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with Zn(OAc)2 has been studied, and kinetic parameters for the formation of the zinc complex according to the molecular and ionic mechanisms have been determined. Extra coordination of 1,8-diazabicyclo[5.4.0]undec-7-ene by the zinc complex of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin.  相似文献   

17.
[131I]-5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and [131I]-5-(4-aminophenyl)-10,15,20-triphenylporphyrin (131I-TPPOH and 131I-TPPNH2) were prepared and their biodistribution properties were evaluated in normal Kunming (KM) mice and SMMC-7721 tumor-bearing BALB/c mice. The optimized labeling yields were 98 and 96 % for 131I-TPPOH and 131I-TPPNH2, respectively. They were stable in vitro saline and in vivo. Both compounds had a specific affinity to liver and lung, and mainly metabolized through liver. They showed a time-dependent accumulation and retainable characteristics in SMMC-7721 tumor. These results supported their potential value for targeted tumor therapy agents.  相似文献   

18.
[reaction: see text] 5,10,15,20-Tetrakis(m-hydroxyphenyl)porphyrin (m-THPP) yielded novel quinonoid porphyrins upon irradiation in aqueous methanol. True photobleaching was observed for 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (m-THPC) and 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (m-THPBC) under the same conditions; several fragmentation products (imides, methyl p-hydroxybenzoate, dipyrrin derivatives) were recognized.  相似文献   

19.
The immobilization of 5,10,15,20-tetrakis(4’-carboxy-phenyl)porphyrin on the surface modified polypropylene films was investigated. To activate the surface of the polypropylene the method of structural-chemical modification of the acrylamide and polyvinyl alcohol developed, which can increase the number immobilizing porphyrin 15–20 times. Modified materials possess of antimicrobial activity.  相似文献   

20.
Abstract

Methoxy-isoporphyrins of zinc [5,10,15,20-tetrakis(4-sulfonatophenyl)]porphyrin, ZnTSPP (1a) and zinc [5,10,15,20-tetrakis(4-carboxyphenyl)]porphyrin, ZnTCPP (1b) have been synthesized and characterized using standard spectroscopic techniques (Uv-visible, 1H NMR) , ESI-mass spectrometry and powder X-ray diffraction studies. The isoporphyrins [5-(methoxy)-5,10,15,20-tetrakis(4-sulfonatophenyl)-5H,15H-porphinato]zinc(II) (2a) and [5-(methoxy)-5,10,15,20-tetrakis(4-carboxyphenyl)-5H,21H-porphinato]zinc(II) (2b) are formed due to nucleophilic attack of the methanol to the zinc porphyrin dication. Ceric ammonium nitrate (CAN) was used to oxidize zinc porphyrin and to form zinc porphyrin dication. The electronic spectra of the isoporphyrin complexes 2a and 2b exhibit an intense peak at near IR region . Electrochemical measurements of the synthesized isoporphyrins showed a typical irreversible reduction peak at lower potential. S-containing nucleophiles, which work as reducing agents, convert the zinc isoporphyrins to their parent porphyrins, which supports the electrochemical observations. Their structural properties have been studied using powder X-ray diffraction. The luminescence properties of isoporphyrins were compared with the parent zinc porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号