首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary: The miscibility and thermal behaviour of binary mixtures of poly(styrene-co-itaconic acid) containing 11 or 27 mol % of itaconic acid (PSIA-11 or PSIA27) with poly(butyl methacrylate) (PBMA)or poly(butyl methacrylate-co-4-vinylpyridine) containing 10 or 26 mol% of 4-vinylpyridine (PBM4VP-10, PBM4V-P26) were investigated by differential scanning calorimetry, scanning electron microscopy, FTIR spectroscopy and thermogravimetry. The results showed that 11 mol % of itaconic acid and 10 mol % of 4-vinylpyridine respectively introduced within the polystyrene and poly(butyl methacrylate) matrices induced the miscibility of this pair of polymers due to specific interactions of hydrogen bonding type with partial pyridine protonation that occurred between the two copolymers as evidenced by FTIR from the appearance of two new bands at 1607 cm−1 and 1640 cm−1. Increasing itaconic acid content from 11 to 27 mol % led to a decrease of the intensity of the specific interactions within PSIA-27/PBM4VP blends and is attributed to both accessibility and self association effects as evidenced by DSC from the change of the shape of the Tg- composition curves and by FTIR spectroscopy. As shown from the thermogravimetric study, the presence of these specific interactions delayed the anhydride formation and improved the thermal stability of the blends.  相似文献   

2.
The miscibility and phase behaviour of poly (isobutyl methacrylate-co-4-vinylpyridine) containing 20 mol% of 4-vinylpyridine (IBM4VP20) and poly (styrene-co-acrylic acid) containing 27 or 32 mol% of acrylic acid (SAA27 or SAA32) mixtures were investigated by DSC, TGA and FTIR spectroscopy in the 25–180 °C temperature range. The results showed that sufficient specific carboxyl–pyridine hydrogen bonding interactions occurred between these copolymers and led to miscible blends as cast from THF and to inter-polymer complexes of significantly improved thermal stability when butan-2-one is the common solvent. The self-association effect on the inter-polymer interactions was evidenced by the decrease of complexation yields, observed when the carboxylic content is increased above 27 mol% as with SAA32.The trend of phase behaviour predicted by a thermodynamic analysis of the specific interactions of hydrogen bonding type that occurred between the two components of the SAA27/IBM4VP20 blends, neglecting the weak carboxyl–ester interactions and the functional group accessibility effect, carried out using the Painter–Coleman association model that considers the screening effects, is in a fair agreement with the experimental results. Moreover an LCST is predicted to occur at relatively high temperature.  相似文献   

3.
Summary: Two kinds of interpolymer complexes as soluble or precipitate of different structures were obtained in both THF and butan-2-one as common solvents by monitoring the hydrogen-bonding density within homoblends of poly(n-butyl methacrylate-co-4-vinylpyridine) (BM4VP) and poly(n-butyl methacrylate-co-methacrylic acid) (BMMA). A viscometry study confirmed such differences between these two types of interpolymer complexes from the behavior of the reduced viscosity of their blend solutions with feed blend composition. Qualitative and quantitative analyses of the interactions that occurred between these copolymers of relatively bulky side chain length containing various amounts of methacrylic acid and 4-vinylpyridine were carried out by FTIR. The fraction of associated pyridine groups to the carboxylic groups of the BMMA increases as the content of these latter increases in the BMMA/BM4VP blends. The obtained results also showed that the fractions of associated pyridine within the BMMA25/BM4VP26 blends are higher than those within BMMA18/BM4VP19 or BMMA8/BM4VP10. The FTIR analysis of a selected BMMA18/BM4VP19 1:1 ratio, carried out from 80 °C to 160 °C, above the glass transition temperatures of the two constituents of the blend, confirms the presence of strong hydrogen bonding interactions between the pyridine and the carboxylic groups within these blends even at 160 °C. A LCST is expected to occur at higher temperature as shown from the progressive decrease of the fraction of the associated pyridine.  相似文献   

4.
The miscibility of blends of copolymers of different compositions of butyl methacrylate-co-methacrylic acid or styrene-co-methacrylic acid with styrene-co-4-vinylpyridine or butyl methacrylate-co-4-vinylpyridine was studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. It was found that these blends were miscible in part as a result of specific favorable interactions between the carboxylic acid and pyridine groups within the polymer chains. Evidence of such interactions was obtained from the single composition-dependent glass transition temperature and the FTIR results.  相似文献   

5.
Well-defined poly(vinyl acetate)-block-poly(4-vinylpyridine) (PVAc-b-P4VP) block copolymers were synthesized for the first time by a combination of cobalt-mediated radical polymerization (CMRP) and reversible addition–fragmentation chain transfer (RAFT) polymerization, and were used to prepare PVAc-b-P4VP hairy polystyrene (PSt) particles. PVAc end-capped by a cobalt(II) acetylacetonate complex was first synthesized by the CMRP of vinyl acetate, after which the cobalt complex was modified into a dithiobenzoate group for the RAFT polymerization of 4-vinylpyridine. The hairy PSt particles were synthesized by the dispersion polymerization of St using the PVAc-b-P4VP as both a macro-initiator and a colloidal stabilizer under UV radiation. The average size of PSt particles synthesized with 20 wt.% of PVAc-b-P4VP (M n = 39,500 g/mol) was 136 nm (CV = 19.2%). Very small Au nanoparticles were successfully immobilized on the surface of the PSt particles.  相似文献   

6.
Summary: we have investigated by DSC and FTIR the miscibility and phase behaviour of binary and ternary blends of different ratios of poly(styrene-co-methacrylic acid) containing 15 mol% of methacrylic acid (SMA15) with poly(styrene-co-N,N-dimethylacrylamide) containing 17 mol% of N,N,-dimethylacrylamide (SAD-17) and poly(styrene- co-4-vinylpyridine) containing 15 mol% of 4-vinylpyridine. SMA15 is miscible with both SAD17 and S4VP15 and interacts more strongly with S4VP15 than with SAD17 as evidenced by the positive deviations from linear average line observed with these blends and the appearance of new bands in the 1800–1550 cm−1 region. This behaviour is known as ΔK effect. The FTIR study confirms that though the specific intermolecular interactions that occurred with each pair of the SMA15/S4VP15 and SMA15/SAD17 binary components are of different strength, they still exist in the ternary blend. Even though the three binary polymer pairs are individually miscible, the ternary system of SMA15/S4VP15/SAD17 exhibits only partial miscibility with small loop of immiscibility due to a significant ΔK effect. These results obtained by DSC and FTIR are in a fair agreement with theoretical prediction applying the Painter-Coleman association model.  相似文献   

7.
Summary: Random copolymers of poly(styrene-co-4-vinylpyridine) (S4VP) and poly (styrene-co-2-hydroxyethyl acrylate) (SHEA) of different compositions were prepared and characterized. An investigation of the effects of solvent and densities of the interacting species incorporated within these copolymers showed that novel and various hydrogen bonding interpolymer complexes of different structures were elaborated when these copolymers are mixed together. The specific interactions that occurred within the SHEA copolymers and the elaborated complexes were evidenced by FTIR qualitatively from the appearance of a new band at 1604 cm−1 and quantitatively using appropriate spectral curve fitting in the carbonyl and pyridine regions. The intermolecular hydrogen bonding interactions that occurred between the hydroxyl groups of the SHEA and the nitrogen atom of the pyridine groups in the S4VP are stronger than the self-associations within the SHEA. In the solid state, a DSC analysis showed that the variation of the glass transition temperatures of these materials with the composition behaved differently with the densities of interacting species and were analyzed quantitatively. A thermal stability study of the synthesized copolymers and of their different mixtures carried by thermogravimetry confirmed a similar behaviour.  相似文献   

8.
Complexation between hydrolysed poly(styrene-co-maleic anhydride) (HSMA) copolymers containing 28% and 50% maleic anhydride and a poly(styrene-co-4-vinylpyridine), St4VP32 copolymer with 32% of 4-vinylpyridine content has been investigated. Formation of interpolymer complexes from 1,4-dioxane solutions is observed, over the entire composition range and the stoichiometry of these complexes has been determined from elemental analysis.Quantitative FTIR study of the system HSMA50/StV4Py32 shows that the ideal complex composition leads to 2:1 unit mole ratio of interacting component. FTIR results are in good agreement with DSC and TGA ones, since this complex composition gives the maximum value of the glass transition temperature and the best thermic stability.For the systems investigated, the Tg versus composition curve do not follow any of the commonly accepted models proposed for polymer blends. A new model proposed by Cowie [Cowie JMG, Garay MT, Lath D, McEwen IJ. Br Poly J 1989;21:81] is used to fit the Tg data and found to reproduce the experimental results more closely.  相似文献   

9.
The synthesis of well defined and monodisperse (Mw/Mn ≤ 1.2) narrow molecular weight distribution poly (2-vinylpyridine)-poly (t-butyl methacrylate) (P2VP-PTBMA) AB block copolymers is carried out by initiation of 2-vinylpyridine polymerization by 1,1-diphenylhexyllithium in THF at-78°C, followed by addition of TBMA and termination at ?78°C using MeOH. The formation of the BAB block copolymer is carried out in a similar fashion except that 1,4-dilithio-1,1,4,4-tetraphenylbutane is used as initiator. The corresponding synthesis of P2VP-PMMA block copolymers is carried in a similar manner, except that 1-2 equivalents of TBMA is used to end-functionalize the living P2VP before the addition of MMA. Without the addition of TBMA, trimodal molecular weight distributions in P2VP-b-PMMA are obtained. All the block copolymers are characterized by Size Exclusion Chromatography (SEC), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC). © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Miscibility and strong specific interactions that occurred within homoblends of poly(styrene‐co‐4‐vinylpyridine) containing 15 mol % of 4‐vinylpyridine (PS4VP15) and poly(styrene‐co‐methacrylic acid) containing 15 mol % of methacrylic acid (PSMA15) have been examined by Fourier Transform infrared spectroscopy and DSC. The observed positive deviation of the glass transition temperature of the blends from the linear average line, was analyzed by the frequently used theoretical conventional approaches including the one very recently proposed by Brostow. A better fit was obtained when this latter is used. A reasonable agreement with experimental values was also obtained when the theoretical fitting parameter free method developed by Coleman, is applied to predict the composition dependence of the Tg of this system. A thermodynamic analysis of hydrogen bonding in this system was carried using the Painter‐Coleman association model and the variation of the Gibbs function of mixing and its different contributions and corresponding phase diagrams as a function of temperature and composition were estimated. This analysis predicted PSMA15 to be miscible with PS4VP15 in the whole composition range up to 150 °C. Above this temperature, a partial miscibility is predicted when the PS4VP15 is in excess. The DSC results are in agreement with these predictions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 923–931, 2009  相似文献   

11.
Copolymers of 4-vinylpyridine (4VP) or N,N′-diethylaminoethyl methacrylate (DEAEMA) were synthesized with various comonomer feed ratios (30 : 70, 50 : 50, and 70 : 30). Charge densities along the polymeric chain were changed in a pH-dependent manner. The copolymers induced membrane fusion of negatively charged liposomes followed by aggregation in a pH-dependent manner, which was investigated by resonance energy transfer. It was found that pH-dependent fusion of liposomes was dependent on the composition of 4VP and DEAEMA in the copolymer with the degree of protonation proportional to the difference in pKa value of the two monomers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2305–2309, 1999  相似文献   

12.
The preparation of block copolymers consisting of poly(4-vinylpyridine) (P4VP) by atom transfer radical polymerization (ATRP) was investigated. The goal was to synthesize water-soluble block copolymers with poly(ethylene oxide) (PEO) as first block, a water-soluble polymer at any pH. First, a PEO macroinitiator was prepared for the ATRP block copolymerization of 4-vinylpyridine. In the second stage, the kinetic behaviour of this block copolymerization was investigated for two different types of PEO-macroinitiators and catalyst systems, based on CuCl or CuCl2/Cu(0), with tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as the ligand. Various combinations of initiator and catalyst led to a controlled block copolymerization with optimized results obtained for chlorinated poly(ethylene glycol) monomethyl ether as macroinitiator, together with CuCl2/Cu(0)/Me6-TREN as catalyst system. With the latter system, narrow polydispersities (1.25) could be reached for PEO-P4VP block copolymers.  相似文献   

13.
Copolymers of dimethyl itaconate (DMI) and 4-vinylpyridine (4VP) were synthetized in toluene at 60°C with0.26 mol% of AIBN as initiator. Their compositions were determined by differential refractometry and by differential scanning calorimetry. The 4VP contents of the copolymer samples ranged between 7 and 75 mol%. The reactivity ratios calculated via the Fineman-Ross method were r 1=0.24 (DMI) and r 2=0.57 (4VP). The thermal degradations of these copolymers were studied. The results of thermogravimetric measurements indicated that the copolymers degrade at lower temperatures than those of their parent homopolymers. A possible explanation of this anomalous behaviour is the formation of thermally unstable structures during the copolymerisation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A series of supramolecular block copolymers were prepared using poly(styrene)-b-poly(4-vinylpyridine)(PS-b-P4VP) which coordinated with cobalt dodecyl benzene sulfonate (Co(DBS)2) in tetrahydrofuran (THF). Fourier transformation infrared spectroscopy (FTIR), UV-vis absorption spectroscopy (UV) and differential scanning calorimetry (DSC) showed that Co(DBS)2 coordinated to the lone electron pairs of the pyridine nitrogens in the P4VP block and leaded to complexes. The supramolecular block copolymers could self-assemble into nanosized micelles with different shapes and dimensions in THF, depending on the number of Co(DBS)2 groups per 4-vinylpyridine (repeat unit was denoted by n) and the ratio between PS block length and P4VP block length. Transmission electron microscopy (TEM) results showed that when the number of repeat units of P4VP was more than that of PS, micelles with different interesting shapes such as spheres, rods, vesicles, large compound vesicles (LCVs) and the large compound micelles (LCMs) were observed if increasing the content of the Co(DBS)2 in PS-b-P4VP copolymer/THF solution; When the number of repeat units of P4VP was less than that of PS, the micelle morphologies changed from spheres to rods, bi-layer, and LCMs if the Co(DBS)2 content was increased progressively.  相似文献   

15.
The miscibility of poly(ε caprolactone) (PCL) with poly(styrene-co-4-hydroxystyrene) (PHS) copolymers was investigated as a function of comonomer composition experimentally and with calculations by two models; the binary interaction model and the association model. PCL was found to be completely miscible with PHS copolymers containing 5 or more mole percent of 4-hydroxystyrene (HS) comonomer units for the entire range of blend compositions. Segmental interaction densities, Bijs, were determined by the analysis of the equilibrium melting point depression and by the application of the binary interaction model. By correlating the segmental interaction energy densities with the binary interaction model, thermodynamic miscibility is for comonomer composition over five mole percent of 4-hydroxystyrene, which is in agreement with the experimental phase behavior. Application of the association model for specific interactions to blends also predicts the experimental miscibility boundary and phase behavior for all the PHS copolymers/PCL blends. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The miscibility of poly(hydroxyether terephthalate ester) (PHETE) with poly(4‐vinyl pyridine) (P4VP) was established on the basis of thermal analysis. Differential scanning calorimetry showed that each blend displayed a single glass‐transition temperature (Tg), which is intermediate between those of the pure polymers and varies with the composition of blend. The Tg‐composition relationship can be well described with Kwei equation with k = 1 and q = ?30.8 (K), suggesting the presence of the intermolecular specific interactions in the blend system. To investigate the intermolecular specific interactions in the blends, the model compounds such as 1,3‐diphenoxy‐2‐propanol, 4‐methyl pyridine, and ethyl benzoate were used to determine the equilibrium constants, according to Coleman and Painter model, to account for the association equilibriums of several structural moieties, using liquid Fourier transform infrared difference spectroscopy. In terms of the difference in the association equilibrium constant, it is proposed that there are the competitive specific interactions in the blends, which were confirmed by means of Fourier transform infrared spectroscopy of the blends. It is observed that upon adding P4VP to the system, the ester carbonyls of PHETE that were H‐bonded with the hydroxyl groups were released because of the formation of the stronger interchain association via the hydrogen bonding between the hydroxyls of PHETE and tertiary nitrogen atoms of P4VP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1618–1626, 2006  相似文献   

17.
Miscibility with a linear T g–composition relationship was proven for blend of poly(butylene adipate-co-butylene terephthalate) [P(BA-co-BT)] with poly(4-vinyl phenol) (PVPh). In comparison to the blends of PBA/PVPh and poly(butylene terephthalate) (PBT)/PVPh, the Kwei’s T g model fitting on data for the P(BA-co-BT)/PVPh blend yields a q value between those for the PBA/PVPh and PBT/PVPh blends. The q values suggest that the interaction strength in the P(BA-co-BT)/PVPh blend is not as strong as that in the PBT/PVPh blend. Upon mixing the PVPh into the immiscible blend of PBA and PBT, the ternary PBA/PBT/PVPh blends only exhibits partial miscibility. Full-scale ternary miscibility in whole compositions is not possible owing to the significant ∆χ effect (χ ij  – χ ik ). The wavenumber shifts of the hydroxyl IR absorbance band indicates that the H-bonding strength is in decreasing order—PBT/PVPh > P(BA-co-BT)/PVPh > PBA/PVPh—and shows that the BA segment in the copolymer tends to defray interactions between P(BA-co-BT) and PVPh in blends.  相似文献   

18.
The interactions between 27% hydrolyzed polyacrylamide [AD37] and poly(4-vinylpyridine) [P4VP], in aqueous solutions and at neutralization degree α = 1, were studied by using viscosimetry technique.The reduced viscosities of these copolymer mixture solutions, at 25 °C, reach several orders of magnitude higher than the reduced viscosity of each polymer taken separately, and according to the ratio R of the chain numbers.Intermolecular electrostatic associations are favoured by increasing the P4VP concentration corresponding to high R values. Thus, mixtures rich in P4VP are characterized by a high decrease in the viscosity due to interpolymer complete complexation AD37-P4VP, leading to the totally contraction or collapse of the polymer chains. Strongest reduced viscosities, due to the inter-chain AD37 associations, are observed for the mixtures poor in P4VP (so the weakest ratios R of the chain numbers).In order to understand the relative effects of these two polymers on the reduced viscosity, two mixtures containing the same total quantity are compared. Reduced viscosities of each copolymer alone strongly increase by dilution of the aqueous solution. In the case of the mixture, an opposite behaviour is observed with a reduction in the reduced viscosity by dilution. So, the increase of the reduced viscosity according to AD37 concentration, at α constant, shows an intra and an inter-chain associative phenomenon.  相似文献   

19.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

20.
Adsorption of the thermoresponsive copolymer of poly(N-isopropylacrylamide-co-4-vinylpyridine) (PNIPAM-co-P4VP) onto the core-shell microspheres of poly(styrene-co-methylacrylic acid) (PS-co-PMAA) is studied. The core-shell PS-co-PMAA microspheres are synthesized by one-stage soap-free polymerization in water. The copolymer of PNIPAM-co-P4VP is synthesized by free radical polymerization of N-isopropylacrylamide and 4-vinylpyridine in the mixture of DMF and water using K2S2O8 as initiator. Adsorption of PNIPAM-co-P4VP onto the core-shell PS-co-PMAA microspheres results in formation of the composite microspheres of PS/PMAA-P4VP/PNIPAM. The driven force to adsorb the copolymer of P4VP-co-PNIPAM onto the core-shell PS-co-PMAA microspheres is ascribed to hydrogen-bonding and electrostatic affinity between the P4VP and PMAA segments. The resultant composite microspheres of PS/PMAA-P4VP/PNIPAM with surface chains of PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 33 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号