首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Every quantum state can be represented as a probability distribution over the outcomes of an informationally complete measurement. But not all probability distributions correspond to quantum states. Quantum state space may thus be thought of as a restricted subset of all potentially available probabilities. A recent publication (Fuchs and Schack, , 2009) advocates such a representation using symmetric informationally complete (SIC) measurements. Building upon this work we study how this subset—quantum-state space—might be characterized. Our leading characteristic is that the inner products of the probabilities are bounded, a simple condition with nontrivial consequences. To get quantum-state space something more detailed about the extreme points is needed. No definitive characterization is reached, but we see several new interesting features over those in Fuchs and Schack (, 2009), and all in conformity with quantum theory.  相似文献   

2.
We represent Born’s rule as an analog of the formula of total probability (FTP): the classical formula is perturbed by an additive interference term. In this note we consider practically the most general case: generalized quantum observables given by positive operator valued measures and measurement feedback on states described by atomic instruments. This representation of Born’s rule clarifies the probabilistic structure of quantum mechanics (QM). The probabilistic counterpart of QM can be treated as the probability update machinery based on the special generalization of classical FTP. This is the essence of the Växjö interpretation of QM: statistical realist contextual and local interpretation. We analyze the origin of the additional interference term in quantum FTP by considering the contextual structure of the two slit experiment which was emphasized by R. Feynman.  相似文献   

3.
《Physics letters. A》2020,384(28):126725
Everettian Quantum Mechanics, or the Many Worlds Interpretation, lacks an explanation for quantum probabilities. We show that the values given by the Born rule equal projection factors, describing the contraction of Lebesgue measures in orthogonal projections from the complex line of a quantum state to eigenspaces of an observable. Unit total probability corresponds to a complex Pythagorean theorem: the measure of a subset of the complex line is the sum of the measures of its projections on all eigenspaces.Postulating the existence of a continuum infinity of identical quantum universes, all with the same quasi-classical worlds, we show that projection factors give relative amounts of worlds. These appear as relative frequencies of results in quantum experiments, and play the role of probabilities in decisions and inference. This solves the probability problem of Everett's theory, allowing its preferred basis problem to be solved as well, and may help settle questions about the nature of probability.  相似文献   

4.
Attempts to derive the Born rule, either in the Many Worlds or Copenhagen interpretation, are unsatisfactory for systems with only a finite number of degrees of freedom. In the case of Many Worlds this is a serious problem, since its goal is to account for apparent collapse phenomena, including the Born rule for probabilities, assuming only unitary evolution of the wavefunction. For finite number of degrees of freedom, observers on the vast majority of branches would not deduce the Born rule. However, discreteness of the quantum state space, even if extremely tiny, may restore the validity of the usual arguments.  相似文献   

5.
We report on an intrinsic relationship between the maximum-likelihood quantum-state estimation and the representation of the signal. A quantum analogy of the transfer function determines the space where the reconstruction should be done without the need for any ad hoc truncations of the Hilbert space. An illustration of this method is provided by a simple yet practically important tomography of an optical signal registered by realistic binary detectors.  相似文献   

6.
It is well-known that the law of total probability does not generally hold in quantum theory. However, recent arguments on some of the fundamental assumptions in quantum theory based on the extended Wigner’s friend scenario show a need to clarify how the law of total probability should be formulated in quantum theory and under what conditions it still holds. In this work, the definition of conditional probability in quantum theory is extended to POVM measurements. A rule to assign two-time conditional probability is proposed for incompatible POVM operators, which leads to a more general and precise formulation of the law of total probability. Sufficient conditions under which the law of total probability holds are identified. Applying the theory developed here to analyze several quantum no-go theorems related to the extended Wigner’s friend scenario reveals logical loopholes in these no-go theorems. The loopholes exist as a consequence of taking for granted the validity of the law of total probability without verifying the sufficient conditions. Consequently, the contradictions in these no-go theorems only reconfirm the invalidity of the law of total probability in quantum theory rather than invalidating the physical statements that the no-go theorems attempt to refute.  相似文献   

7.
A geometric approach to quantum mechanics with unitary evolution and non-unitary collapse processes is developed. In this approach the Schrödinger evolution of a quantum system is a geodesic motion on the space of states of the system furnished with an appropriate Riemannian metric. The measuring device is modeled by a perturbation of the metric. The process of measurement is identified with a geodesic motion of state of the system in the perturbed metric. Under the assumption of random fluctuations of the perturbed metric, the Born rule for probabilities of collapse is derived. The approach is applied to a two-level quantum system to obtain a simple geometric interpretation of quantum commutators, the uncertainty principle and Planck’s constant. In light of this, a lucid analysis of the double-slit experiment with collapse and an experiment on a pair of entangled particles is presented.  相似文献   

8.
9.
A generalized Bloch sphere, in which the states of a quantum entity of arbitrary dimension are geometrically represented, is investigated and further extended, to also incorporate the measurements. This extended representation constitutes a general solution to the measurement problem, inasmuch it allows to derive the Born rule as an average over hidden-variables, describing not the state of the quantum entity, but its interaction with the measuring system. According to this modelization, a quantum measurement is to be understood, in general, as a tripartite process, formed by an initial deterministic decoherence-like process, a subsequent indeterministic collapse-like process, and a final deterministic purification-like process. We also show that quantum probabilities can be generally interpreted as the probabilities of a first-order non-classical theory, describing situations of maximal lack of knowledge regarding the process of actualization of potential interactions, during a measurement.  相似文献   

10.
11.
Kolmogorov’s axioms of probability theory are extended to conditional probabilities among distinct (and sometimes intertwining) contexts. Formally, this amounts to row stochastic matrices whose entries characterize the conditional probability to find some observable (postselection) in one context, given an observable (preselection) in another context. As the respective probabilities need not (but, depending on the physical/model realization, can) be of the Born rule type, this generalizes approaches to quantum probabilities by Aufféves and Grangier, which in turn are inspired by Gleason’s theorem.  相似文献   

12.
We show that the quantum mechanical rules for manipulating probabilities follow naturally from standard probability theory. We do this by generalizing a result of Khinchin regarding characteristic functions. From standard probability theory we obtain the methods usually associated with quantum theory; that is, the operator method, eigenvalues, the Born rule, and the fact that only the eigenvalues of the operator have nonzero probability. We discuss the general question as to why quantum mechanics seemingly necessitates different methods than standard probability theory and argue that the quantum mechanical method is much richer in its ability to generate a wide variety of probability distributions which are inaccessibe by way of standard probability theory.It is a pleasure to dedicate this paper to David Bohm in honor of his 70th birthday.This work is supported in part by The City University Research Award Program.  相似文献   

13.
The objective of the consistent-amplitude approach to quantum theory has been to justify the mathematical formalism on the basis of three main assumptions: the first defines the subject matter, the second introduces amplitudes as the tools for quantitative reasoning, and the third is an interpretative rule that provides the link to the prediction of experimental outcomes. In this work we introduce a natural and compelling fourth assumption: if there is no reason to prefer one region of the configuration space over another, then they should be weighted equally. This is the last ingredient necessary to introduce a unique inner product in the linear space of wave functions. Thus, a form of the principle of insufficient reason is implicit in the Hilbert inner product. Armed with the inner product we obtain two results. First, we elaborate on an earlier proof of the Born probability rule. The implicit appeal to insufficient reason shows that quantum probabilities are not more objective than classical probabilities. Previously we had argued that the consistent manipulation of amplitudes leads to a linear time evolution; our second result is that time evolution must also be unitary. The argument is straightforward and hinges on the conservation of entropy. The only subtlety consists of defining the correct entropy; it is the array entropy, not von Neumann's. After unitary evolution has been established we proceed to introduce the useful notion of observables and we explore how von Neumann's entropy can be linked to Shannon's information theory. Finally, we discuss how various connections among the postulates of quantum theory are made explicit within this approach.  相似文献   

14.
15.
Quantification starts with sum and product rules that express combination and partition. These rules rest on elementary symmetries that have wide applicability, which explains why arithmetical adding up and splitting into proportions are ubiquitous. Specifically, measure theory formalizes addition, and probability theory formalizes inference in terms of proportions. Quantum theory rests on the same simple symmetries, but is formalized in two dimensions, not just one, in order to track an object through its binary interactions with other objects. The symmetries still require sum and product rules (here known as the Feynman rules), but they apply to complex numbers instead of real scalars, with observable probabilities being modulus squared (known as the Born rule). The standard quantum formalism follows. There is no mystery or weirdness, just ordinary probabilistic inference.  相似文献   

16.
17.
First steps are taken toward a formulation of quantum mechanics which avoids the use of probability amplitudes and is expressed entirely in terms of observable probabilities. Quantum states are represented not by state vectors or density matrices but by probability tables, which contain only the probabilities of the outcomes of certain special measurements. The rule for computing transition probabilities, normally given by the squared modulus of the inner product of two state vectors, is re-expressed in terms of probability tables. The new version of the rule is surprisingly simple, especially when one considers that the notion of complex phases, so crucial in the evaluation of inner products, is entirely absent from the representation of states used here.  相似文献   

18.
The relation between the density matrix obeying the von Neumann equation and the wave function obeying the Schrödinger equation is discussed in connection with the superposition principle of quantum states. The definition of the ray-addition law is given, and its relation to the addition law of vectors in the Hilbert space of states and the role of a constant phase factor of the wave function is elucidated. The superposition law of density matrices, Wigner functions, and tomographic probabilities describing quantum states in the probability representation of quantum mechanics is studied. Examples of spin-1/2 and Schrödinger-cat states of the harmonic oscillator are discussed. The connection of the addition law with the entanglement problem is considered.  相似文献   

19.
In a recent paper [e-print quant-ph/0101012], Hardy has given a derivation of quantum theory from five reasonable axioms. Here we show that Hardy's first axiom, which identifies probability with limiting frequency in an ensemble, is not necessary for his derivation. By reformulating Hardy's assumptions, and modifying a part of his proof, in terms of Bayesian probabilities, we show that his work can be easily reconciled with a Bayesian interpretation of quantum probability.  相似文献   

20.
The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed ‘consistent’. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of multiple gravitational models in which Lorentz symmetry is not fundamental, but only emergent. And what allows this approach to overcome previous barriers to a timeless, conditional probabilities interpretation of quantum mechanics is the new notion of records—made possible by an inherent asymmetry of configuration space. I outline and explore consequences of this approach for foundational issues of quantum mechanics, such as the natural emergence of the Born rule, conservation of probabilities, and the Sleeping Beauty paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号