首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study the flow field and the nanoparticle collection efficiency of supersonic/hypersonic impactors with different nozzle shapes were studied using a computational modeling approach. The aim of this study was to develop a nozzle design for supersonic/hypersonic impactors with the smallest possible cut-off size d50 and rather sharp collection efficiency curves. The simulation results show that the changes in the angle and width of a converging nozzle do not alter the cut-off size of the impactor; however, using a conical Laval nozzle with an L/Dn ratio less than or equal to 2 reduced d50. The effect of using a cap as a focuser in the nozzle of a supersonic/hypersonic impactor was also investigated. The results show that adding a cap in front of the nozzle had a noticeable effect on decreasing the cut-off size of the impactor. Both flat disks and conical caps were examined, and it was observed that the nozzle with the conical cap had a lower cut-off size.  相似文献   

2.
Optimization of 3D sharp high speed impactors with given form of a longitudinal contour, length, and volume, penetrating into layered ductile targets, both for conical and thin non-conical strikers using approximate models is studied. It is found that the impactor with the minimum drag moving in a homogenous target with a constant velocity penetrates to the maximal depth into a semi-infinite target and has the minimal ballistic limit when it penetrates into a finite thickness target, regardless of the distribution of the material properties of the target along its depth, the number of the layers, etc. Using the analogy with the hypersonic flow over the flying projectiles it is predicted that the optimal impactor should have a star-shaped form of the cross section. If an impactor has a polygonal cross sections allowing the inscribed circles, the ballistic limit and maximum depth of penetration are independent not only of the properties of the target but also of the form of the polygon in the cross section and equal to the corresponding values for the inscribed body of revolution.  相似文献   

3.
Mixing of high speed coaxial jets   总被引:3,自引:0,他引:3  
In this study, five different supersonic nozzles – conical, elliptical, tabbed, radially lobed and two-dimensional lobed – are compared experimentally for their mixing performance. With the background of studies by various groups conducted on the above nozzles, the present paper aims to provide an experimental comparison of their respective mixing performances with that of a conventional conical nozzle under identical operating conditions. The mixing of the supersonic stream coming from such nozzles with a coaxial sonic stream is investigated. The investigation is performed non-intrusively, using digital image processing of planar Mie-scattering images of the flow field. The results of these investigations reveal the superiority of mixing performance of the two-dimensional lobed nozzle over conventional circular and other non-conventional nozzles. Received: 15 July 1999/Accepted: 3 July 2000  相似文献   

4.
Transverse secondary gas injection into the supersonic flow of an axisymmetric convergent–divergent nozzle is investigated to describe the effects of the fluidic thrust vectoring within the framework of a small satellite launcher. Cold-flow dry-air experiments are performed in a supersonic wind tunnel using two identical supersonic conical nozzles with the different transverse injection port positions. The complex three-dimensional flow field generated by the supersonic cross-flows in these test nozzles was examined. Valuable experimental data were confronted and compared with the results obtained from the numerical simulations. Different nozzle models are numerically simulated under experimental conditions and then further investigated to determine which parameters significantly affect thrust vectoring. Effects which characterize the nozzle and thrust vectoring performances are established. The results indicate that with moderate secondary to primary mass flow rate ratios, ranging around 5 %, it is possible to achieve pertinent vector side forces. It is also revealed that injector positioning and geometry have a strong effect on the shock vector control system and nozzle performances.  相似文献   

5.
Abstract. Transdermal powdered drug delivery involves the propulsion of solid drug particles into the skin by means of high-speed gas-particle flow. The fluid dynamics of this technology have been investigated in devices consisting of a convergent-divergent nozzle located downstream of a bursting membrane, which serves both to initiate gas flow (functioning as the diaphragm of a shock tube) and to retain the drug particles before actuation. Pressure surveys of flow in devices with contoured nozzles of relatively low exit-to-throat area ratio and a conical nozzle of higher area ratio have indicated a starting process of approximately 200 s typical duration, followed by a quasi-steady supersonic flow. The velocity of drug particles exiting the contoured nozzles was measured at up to 1050 m/s, indicating that particle acceleration took place primarily in the quasi-steady flow. In the conical nozzle, which had larger exit area ratio, the quasi-steady nozzle flow was found to be overexpanded, resulting in a shock system within the nozzle. Particles were typically delivered by these nozzles at 400 m/s, suggesting that the starting process and the quasi-steady shock processed flow are both responsible for acceleration of the particle payload. The larger exit area of the conical nozzle tested enables drug delivery over a larger target disc, which may be advantageous. Received 12 March 2000 / Accepted 8 June 2000  相似文献   

6.
A method of combined profiling of a combustion chamber and two-dimensional supersonic nozzle with a given total length is demonstrated with reference to a hydrogen/air hypersonic ramjet. The possibility of a considerable increase in thrust is illustrated by various devices designed within the framework of the method developed.  相似文献   

7.
The flow of igniting hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. A possibility of stabilizing detonation combustion is numerically investigated at different freestream Mach numbers with account for nonuniform distribution of hydrogen concentration at the nozzle entry. The investigation is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used. The calculated thrust is compared with the drag of a conical housing containing the supersonic nozzle considered.  相似文献   

8.
A multigrid acceleration technique developed for solving the three-dimensional Navier–Stokes equations for subsonic/transonic flows has been extended to supersonic/hypersonic flows. An explicit multistage Runge–Kutta type of time-stepping scheme is used as the basic algorithm in conjunction with the multigrid scheme. Solutions have been obtained for a blunt conical frustum at Mach 6 to demonstrate the applicability of the multigrid scheme to high-speed flows. Computations have also been performed for a generic High-Speed Civil Transport configuration designed to cruise at Mach 3. These solutions demonstrate both the efficiency and accuracy of the present scheme for computing high-speed viscous flows over configurations of practical interest.  相似文献   

9.
This study investigates hypersonic flow in a conical nozzle at large distances from the throat with account for the interaction with the laminar boundary layer.A study of the asymptotic nature of the hypersonic flow of an ideal gas in an expanding nozzle whose wall was close to a kth-power parabola was made by Ladyzhenskii [1], who showed in particular that for 00)0* the nonuniformity in the distribution of all the gasdynamic parameters in the flow is hydraulic in nature; in this case the maximal Mach number is determined from the boundary-layer joining condition at the nozzle centerline; 2) for Reynolds numbers much larger than (R0)0*, when most of the gas is concentrated near the outer edge of the potential core, the region of isentropic flow is bounded in the direction of the stream by the interaction of the compressed gas layers.The author wishes to thank V. N. Gusev and V. N. Zhigulev for helpful discussions of this study.  相似文献   

10.
The shape of the normally striking impactor that attains the maximum depth of penetration into a concrete or a limestone semi-infinite target for a given impact velocity is found. It is shown that the optimum shape is close to a blunt (in general case) cone and it is independent on the properties of the material of the target in the framework of the employed penetration model. The performance of some other typical shapes of the nose of the impactors (spherical-conic impactors, sharp-conic impactors, truncated-ogive impactors) are analyzed and compared with the optimal impactor.  相似文献   

11.
The starting of an axisymmetric convergent-divergent nozzle, with the result that supersonic flow is formed within almost the entire channel, is modeled, as applied to the hypersonic aerodynamic setup of the Institute of Mechanics of Moscow State University. A successful starting is realized when the nozzle is thrown in a uniform supersonic air flow at a fairly high Mach number. The steady flow structure is studied. It is numerically shown that in the convergent section of the channel there arises an oblique shock wave whose interaction with the nozzle axis leads to the formation of a reflected shock and a curvilinear Mach disk with a region of unsteady subsonic flow in the vicinity of the throat. The mathematical model is based on the two-dimensional Euler equations for axisymmetric gas flows.  相似文献   

12.
A numerical investigation of thermal non-equilibrium flows requires species specific relaxation rates, which are often calculated using the Landau–Teller model. This model requires the determination of collision specific relaxation times, which can be computed using Millikan and White’s empirical formula. The coefficients used in this formula for each specific collision pair form a set of coefficients, which are assessed here. The focus of the investigation lies on their performance in hypersonic low-temperature (300–2,500?K) flows that occur at shock-tunnel nozzle exits or in supersonic combustion ramjets (scramjets) before combustion. Two experimental validation cases are chosen; a shock-tunnel nozzle and a sharp cone in hypersonic cross-flow experiment. A comparison of the experimentally measured vibrational temperatures at the nozzle exit against numerical data shows large discrepancies for two commonly used coefficient sets. A revised set of coefficients is proposed that greatly improves the agreement between the numerical and experimental results. Furthermore, the numerically generated shock shape over the sharp cone using the revised set of coefficients correlates well with the experimental measurements.  相似文献   

13.
On the basis of modified Newtonian theory and the theory of selfsimilar hypersonic flows we study the form of the optimal contour of a body of revolution with minimal drag coefficient at hypersonic speeds. It is shown that bodies of optimal form also have a small heat transfer coefficient, much smaller than for a conical body. It is established experimentally that the optimal properties of these bodies of revolution are also retained for moderate supersonic flight speeds.In concluslion the author wishes to thank V. V. Sychev for valuable discussions of this problem.  相似文献   

14.
In the present work, we propose a reformulation of the fluxes and interpolation calculations in the PISO method, a well‐known pressure‐correction solver. This new reformulation introduces the AUSM+ ? up flux definition as a replacement for the standard Rhie and Chow method of obtaining fluxes and central interpolation of pressure at the control volume faces. This algorithm tries to compatibilize the good efficiency of a pressure based method for low Mach number applications with the advantages of AUSM+ ? up at high Mach number flows. The algorithm is carefully validated using exact solutions. Results for subsonic, transonic and supersonic axisymmetric flows in a nozzle are presented and compared with exact analytical solutions. Further, we also present and discuss subsonic, transonic and supersonic results for the well known bump test‐case. The code is also benchmarked against a very tough test‐case for the supersonic and hypersonic flow over a cylinder. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The article discusses the outflow of a nonviscous gas from a strongly unexpanded supersonic nozzle into a supersonic wake. Under the assumption that the radius of the outlet cross section of the nozzle is negligibly small in comparison with the characteristic dimensions of the jet, expressions are obtained for the transverse and longitudinal dimensions of the jet, as well as similarity criteria determining the dimensionless gasdynamic functions. The satisfaction of the similarity criteria was verified by comparison with numerical calculations. Similarity with the outflow of strongly unexpanded jets was discussed in [1–3], where, specifically, the characteristic dimension of the flow was determined. In [4] it was demonstrated that the experimentally observed structure of the jet can be best described with the introduction of two characteristic dimensions, longitudinal and transverse. The effective construction of these two characteristic dimensions for the case of nonviscous outflow into a flooded space was carried out in [5], in which it was shown that using the longitudinal and transverse dimensions the geometries of the flow and the gasdynamic parameters are found to depend on the adiabatic index of the outflowing gas and on a parameter formed from the integral characteristics of the nozzle. The present work is a generalization of the results of [5] for the outflow of a jet into a hypersonic wake.  相似文献   

16.
This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88–1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.   相似文献   

17.
Planar laser-induced fluorescence visualisation is used to investigate nonuniformities in the flow of a hypersonic conical nozzle. Possible causes for the nonuniformity are outlined and investigated, and the problem is shown to be due to a small step at the nozzle throat. Entrainment of cold boundary layer gas is postulated as the cause of the signal nonuniformity. PACS 47.80.Jk, 47.40.Ki, 47.60.+i  相似文献   

18.
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern. A version of this paper was presented at the 25th International Symposium on Shock Waves in Bangalore in July 2005.  相似文献   

19.
The article gives the results of an experimental investigation of the emission of a discrete tone by supersonic jets flowing out of conical supersonic nozzles. It is shown that a change in the aperture angle of the nozzle, the other parameters remaining unchanged, has a considerable effect on the structure of the flow in the initial section of the jet, which leads to a change in the frequency of the discrete tone and in the range of the degree of the rated capacity with which it arises.  相似文献   

20.
Results are presented of an experimental investigation of the influence of the entrance conditions, the coarseness of the solid impurities (the nozzle scale), the profiles of the sub- and transonic parts of the nozzle, and the initial concentration on the discrete phase distribution in the exit sections of axisymmetric nozzles. It is shown that profiling of the subsonic part of the nozzle plays a governing role as compared with the transonic part, and the greatest filling of the supersonic nozzle section by a solid impurity is observed in the conical entrance. The nonuniformity of the parameter distribution at the nozzle entrance does not substantially alter the solid impurity distribution at the exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号